Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2278-2287    https://doi.org/10.11896/j.issn.1005-023X.2018.13.019
  高分子与聚合物基复合材料 |
苯系物(BTEX)检测气敏材料研究进展
陈明鹏, 张裕敏, 张瑾, 柳清菊
云南大学材料科学与工程学院,云南省微纳材料与技术重点实验室,昆明 650091
Research Progress of Gas-sensing Material for BTEX Detection
CHEN Mingpeng, ZHANG Yumin, ZHANG Jin, LIU Qingju
Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091
下载:  全 文 ( PDF ) ( 2341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属氧化物半导体传感器因具有体积小、成本低廉、使用方便等优点,越来越受到研究者的关注并被用于有毒有害气体的监测。传感材料是气敏传感器的核心,本文综述了近年来氧化物半导体BTEX气敏传感材料的研究进展,对传感材料的微结构、负载/掺杂改性、气敏性能、气敏机理及存在的问题进行了分析,并探讨了其下一步发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈明鹏
张裕敏
张瑾
柳清菊
关键词:  金属氧化物  BTEX  气敏  传感器  微结构  改性    
Abstract: Metal oxide semiconductor sensor has attracted an increasing number of attention and applied to the detection of hazardous gases because of small size, low cost and convenient usage and so on. The sensing material is the core of the gas sensor. In this paper, research progress of oxide semiconductor BTEX gas sensors in recent years are reviewed. The microstructure, loading/doping modification, gas-sensing performance, gas-sensing mechanism and main problems of sensing material in recent years are analysed. Furthermore, the prospect of BTEX gas sensor is discussed.
Key words:  metal oxide    BTEX    gas-sensing    sensor    microstructure    modification
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  X502  
基金资助: 国家自然科学基金(51562038;51402257)
通讯作者:  柳清菊:通信作者,女,1966年生,教授,博士研究生导师,主要从事气敏传感材料及器件、纳米功能材料及其应用的研究 E-mail:qjliu@ynu.edu.cn   
作者简介:  陈明鹏:男,1994年生,硕士研究生,从事传感材料与器件的研究
引用本文:    
陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
CHEN Mingpeng, ZHANG Yumin, ZHANG Jin, LIU Qingju. Research Progress of Gas-sensing Material for BTEX Detection. Materials Reports, 2018, 32(13): 2278-2287.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.019  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2278
1 Allouch A, Calvé S L, Serra C A. Portable, miniature, fast and high sensitive real-time analyzers: BTEX detection[J].Sensors and Actua-tors B: Chemical,2013,182(3):446.
2 Endo T, Yanagida Y, Hatsuzawa T. Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications[J].Sensors and Actuators B: Chemical,2007,125(2):589.
3 Wang L, Kang Y, Liu X, et al. ZnO nanorod gas sensor for ethanol detection[J].Sensors and Actuators B: Chemical,2012,162(1):237.
4 Li K M, Li Y J, Lu M Y, et al. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties[J].Advanced Functional Materials,2010,19(15):2453.
5 Liu X, Chen N, Han B, et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity[J].Nanoscale,2015,7(36):14872.
6 Sun H, Wang L, Chu D, et al. Facile fabrication of multishelled Cr2O3, hollow microspheres with enhanced gas sensitivity[J].Materials Letter,2014,140:158.
7 Deng S, Chen N, Deng D, et al. Meso-and macroporous coral-like Co3O4, for VOCs gas sensor[J].Ceramics International,2015,41(9):11004.
8 Khaleed A A, Bello A, Dangbegnon J K, et al. Effect of activated carbon on the enhancement of CO sensing performance of NiO[J].Journal of Alloys and Compounds,2017,694:155.
9 Samerjai T, Tamaekong N, Liewhiran C, et al. CO detection of hydrothermally synthesized Pt-loaded WO3 films[J].Journal of Nanoscience and Nanotechnology,2014,14(10):7763.
10 Li X, Li X, Wang J, et al. Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2, microspheres[J].Sensors and Actuators B: Chemical,2015,219:158.
11 Cho S Y, Yoo H W, Ju Y K, et al. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for vo-latile organic compounds[J].Nano Letters,2016,16(7):4508.
12 Kim H J, Lee J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview[J].Sensors and Actuators B: Chemical,2014,192:607.
13 Wang H, Qu Y, Chen H, et al. Highly selective n-butanol gas sensor based on mesoporous SnO2, prepared with hydrothermal treatment[J].Sensors and Actuators B: Chemical,2014,201:153.
14 Young J H, Ji W Y, Lee J H, et al. One-pot synthesis of Pd-loaded SnO2, yolk-shell nanostructures for ultraselective methyl benzene sensors[J].Chemistry—A European Journal,2014,20(10):2737.
15 Kim J H, Wu P, Kim H W, et al. Highly selective sensing of CO, C6H6, and C7H8 gases by catalytic functionalization with metal na-noparticles[J].ACS Applied Materials & Interfaces,2016,8(11):7173.
16 Elmi I, Zampolli S, Cozzani E, et al. Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications[J].Sensors and Actuators B: Chemical,2008,135(1):342.
17 Wang L, Wang S, Xu M, et al. A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene[J].Physical Chemistry Chemical Physics,2013,15(40):17179.
18 Jeong S Y, Yoon J W, Jeong H M, et al. Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality[J].Journal of Materials Chemistry A,2016,5(4):1446.
19 Mirzaei A, Leonardi S G, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review[J].Ceramics International,2016,42(14):15119.
20 Lü Y, Zhan W, He Y, et al. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties[J].ACS Applied Materials & Interfaces,2014,6(6):4186.
21 Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: Sensitivity and influencing factors[J].Sensors,2010,10(3):2088.
22 Dutta K, Bhowmik B, Hazra A, et al. An efficient BTX sensor based on p-type nanoporous titania thin films[J].Microelectronics Reliability,2015,55(3-4):558.
23 Zhou X, Lee S, Xu Z, et al. Recent progress on the development of chemosensors for gases[J].Chemical Review,2015,115(15):7944.
24 Hamedani N F, Mahjoub A R, Khodadadi A A, et al. Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4, and ethanol[J].Sensors and Actuators B: Chemical,2011,156(2):737.
25 Sun Y, Wei Z, Zhang W, et al. Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties[J].Journal of Materials Science,2016,51(3):1428.
26 Tang W, Wang J. Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer[J].Sensors and Actuators B: Chemical,2015,207:66.
27 Wang L, Lou Z, Fei T, et al. Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications[J].Journal of Materials Chemistry,2011,21(48):19331.
28 Suematsu K, Shin Y, Hua Z, et al. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive to-luene detection[J].ACS Applied Materials & Interfaces,2014,6(7):5319.
29 Kim J H, Kim S S. Realization of ppb-scale toluene-sensing abilities with Pt-functionalized SnO2-ZnO core-shell nanowires[J].ACS Applied Materials & Interfaces,2015,7(31):17199.
30 Kang J G, Park J S, Lee H J. Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO[J].Sensors and Actuators B: Chemical,2017,248:1011.
31 Ma H, Xu Y, Rong Z, et al. Highly toluene sensing performance based on monodispersed Cr2O3, porous microspheres[J].Sensors and Actuators B: Chemical,2012,174(11):325.
32 Chen W, Cheng X, Xin Z, et al. Hierarchical α-Fe2O3/NiO compo-sites with a hollow structure for a gas sensor[J].ACS Applied Materials & Interfaces,2014,6(15):12031.
33 Park J, Shen X, Wang G. Solvothermal synthesis and gas-sensing performance of Co3O4, hollow nanospheres[J].Sensors and Actuators B: Chemical,2009,136(2):494.
34 Sun C, Su X, Xiao F, et al. Synthesis of nearly monodisperse Co3O4, nanocubes via a microwave-assisted solvothermal process and their gas sensing properties[J].Sensors and Actuators B: Chemical,2011,157(2):681.
35 Ivanovskaya M, Kotsikau D, Faglia G, et al. Influence of chemical composition and structural factors of Fe2O3 /In2O3, sensors on their selectivity and sensitivity to ethanol[J].Sensors and Actuators B: Chemical,2003,96(3):498.
36 Kim B Y, Ahn J H, Yoon J W, et al. Highly selective xylene sensor based on NiO/NiMoO4 nanocomposite hierarchical spheres for indoor air monitoring[J]. ACS Applied Materials & Interfaces,2016,8(50):34603.
37 Kim J H, Jeong H M, Chan W N, et al. Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4, hetero-nanostructures prepared by galvanic replacement[J].Sensors and Actuators B: Chemical,2016,235:498.
38 Cao J, Wang Z, Wang R, et al. Electrostatic sprayed Cr-loaded NiO core-in-hollow-shell structured micro/nanospheres with ultra-selectivity and sensitivity for xylene[J].Crystengcomm,2014,16(33):7731.
39 Kim H J, Yoon J W, Choi K I, et al. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures[J].Nanoscale,2013,5(15):7066.
40 Qu F, Jiang H, Yang M. Designed formation through a metal orga-nic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties[J].Nanoscale,2016,8(36):16349.
41 Zhang J, Liu X, Neri G, et al. Nanostructured materials for room-temperature gas sensors[J].Advanced Materials,2016,28(5):795.
42 Cao Y, Hu P, Pan W, et al. Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature so-lid-state chemical reaction[J].Sensors and Actuators B: Chemical,2008,134(2):462.
43 Xu K, Yang L, Zou J, et al. Fabrication of novel flower-like Co3O4, structures assembled by single-crystalline porous nanosheets for enhanced xylene sensing properties[J].Journal of Alloys and Compounds,2017,706:116.
44 Li Y, Ma X, Guo S, et al. Hydrothermal synthesis and enhanced xylene-sensing properties of pompon-like Cr-doped Co3O4 hierarchical nanostructures[J].RSC Advances,2016,6(27):22889.
45 Zhang J, Tang P, Liu T, et al. Facile synthesis of mesoporous hie-rarchical Co3O4-TiO2 p-n heterojunctions with greatly enhanced gas sensing performance[J].Journal of Materials Chemistry A,2017,5(21):10387.
46 Öztürk S, Kösemen A, Kösemen Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors[J].Sensors and Actuators B: Chemical,2016,222:280.
47 Kanda K, Maekawa T. Development of a WO3, thick-film-based sensor for the detection of VOC[J].Sensors and Actuators B: Che-mical,2005,108(1-2):97.
48 Zhang F, Wang X, Dong J, et al. Selective BTEX sensor based on a SnO2/V2O5, composite[J].Sensors and Actuators B: Chemical,2013,186(6):126.
49 Ren F, Gao L, Yuan Y, et al. Enhanced BTEX gas-sensing perfor-mance of CuO/SnO2, composite[J].Sensors and Actuators B: Chemical,2016,223:914.
50 Miller D R, Akbar S A, Morris P A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review[J].Sensors and Actuators B: Chemical,2014,204:250.
51 Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors[J].Catalysis Surveys from Asia,2003,7(1):63.
52 Sui L L, Zhang X F, Cheng X, et al. Au-loaded hierarchical MoO3 hollow spheres with enhanced gas sensing performance for the detection of BTX (benzene, toluene and xylene) and the sensing mechanism[J].ACS Applied Materials & Interfaces,2016,9(2):1661.
53 Kolmakov A, Chen X, Moskovits M. Functionalizing nanowires with catalytic nanoparticles for gas sensing application[J].Journal of Nanoscience and Nanotechnology,2008,8(1):111.
54 Shimizu Y, Matsunaga N, Hyodo T, et al. Improvement of SO2, sensing properties of WO3, by noble metal loading[J].Sensors and Actuators B: Chemical,2001,77(1-2):35.
55 Rai P, Majhi S, Yu Y T, et al. Synthesis of plasmonic Ag@SnO2 core-shell nanoreactors for xylene detection[J].RSC Advances,2015,5(23):17653.
56 Yao Y, Ji F, Yin M, et al. Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors[J].ACS Applied Materials & Interfaces,2016,8(28):18165.
57 Koo W T, Yu S, Choi S J, et al. Nanoscale PdO catalyst functiona-lized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath[J].ACS Applied Materials & Interfaces,2017,9(9):8201.
58 Hammer B, Noerskov J K. ChemInform abstract: Theoretical surface science and catalysis-calculations and concepts[J].Advanced in Catalysis,2000,45:79.
59 Batzill M, Diebold U. The surface and materials science of tin oxide[J].Progress in Surface Science,2005,79:47.
60 Liu Y L, Shi C C. First principles plane wave calculations: molecular and dissociative adsorption of hydrogen molecule on tetrahedral Pd4 clusters decorated graphene[J].Journal of Chongqing University of Technology (Natural Science),2016,30(7):45(in Chinese).
刘亚丽,史长城.Pd4四面体掺杂石墨烯储氢的第一性原理计算[J].重庆理工大学学报(自然科学),2016,30(7):45.
61 Qiao L, Bing Y, Wang Y, et al. Enhanced toluene sensing perfor-mances of Pd-loaded SnO2 cubic nanocages with porous nanoparticle-assembled shells[J].Sensors and Actuators B: Chemical,2017,241:1121.
62 Hwang S J, Kang Y C. Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene[J].Chemistry-A European Journal,2015,21(15):5872.
63 Rothschild A, Komem Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors[J].Journal of Applied Physics,2004,95(11):6374.
64 Lee C, Dai Z, Jeong S, et al. Monolayer Co3O4 inverse opals as multifunctional sensors for volatile organic compounds[J].Chemistry—A European Journal,2016,22(21):7102.
65 Kaneti Y V, Moriceau J, Liu M, et al. Hydrothermal synthesis of ternary α-Fe2O3-ZnO-Au nanocomposites with high gas-sensing performance[J].Sensors and Actuators B: Chemical,2015,209:889.
66 Su P G, Yang L Y. NH3, gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature[J].Sensors and Actuators B: Chemical,2016,223:202.
67 Llobet E. Gas sensors using carbon nanomaterials: A review[J].Sensors and Actuators B: Chemical,2013,179:32.
68 Lu G, Ocola L E, Chen J. Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes[J].Advanced Materials,2009,21(24):2487.
69 Qu F, Yuan Y, Guarecuco R, et al. Low working-temperature acetone vapor sensor based on zinc nitride and oxide hybrid composites[J].Small,2016,12(23):3128.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[3] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[6] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[7] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[8] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[9] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[10] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[11] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[12] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[13] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[14] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[15] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed