Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1401-1405    https://doi.org/10.11896/cldb.17090054
  金属与金属基复合材料 |
木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用
谢婉晨, 李建三
华南理工大学机械与汽车工程学院,广州 510640
Inhibition Action and Adsorption Behavior of Sodium Lignosulphonate on Q235 Steel in Simulated Concrete Solution
XIE Wanchen, LI Jiansan
College of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验采用动电位极化、表面形貌分析等方法研究了木质素磺酸钠在含氯混凝土模拟孔隙液中对碳钢的缓蚀性能,探讨了吸附行为。结果表明,木质素磺酸钠在混凝土模拟孔隙液体系中对碳钢有较好的抗点蚀缓蚀性能,缓蚀效果随木质素磺酸钠添加量的增加而增强。木质素磺酸钠在碳钢表面的吸附过程是自发放热反应,随温度升高,其对碳钢的缓蚀作用降低。吸附行为符合Langmuir吸附等温式,属于以化学吸附为主的混合吸附。其中磺酸基与Ca2+之间的共吸附作用为物理吸附,羧基、苯环结构与Fe的3d空轨道发生配位形成配位键,为化学吸附。木质素磺酸钠形成均匀的吸附膜能有效减少Cl-在钝化膜表面的特性吸附,有效抑制Cl-引起的碳钢点蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢婉晨
李建三
关键词:  木质素磺酸钠  碳钢  缓蚀性能  吸附等温式    
Abstract: Inhibition action and adsorption behavior of sodium lignosulphonate on Q235 steel in simulated concrete solution were investigated by means of potentiodynamic polarization and surface analysis techniques. The results indicated that sodium lignosulphonate have good pitting corrosion inhibition for Q235 steel in simulated concrete solution. The inhibition efficiency strengthened with increase of sodium lignosulphonate concentration. The adsorption reaction was a spontaneous exothermic process and followed Langmuir isotherm. It belonged to mix-type adsorption mainly dominated by chemisorption. The coadsorption of sulfonic acid group and Ca2+ belonged to physisorption. Carboxyl and benzene ring structure had coordinated with Fe-3d orbitals, which belonged to chemisorption. Adsorption film of sodium lignosulphonate formed on Q235 steel can reduce adsorption of Cl- so pitting corrosion caused by Cl- can be effectively suppressed.
Key words:  sodium lignosulphonate    Q235 steel    inhibition action    adsorption isotherm
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG174.2  
通讯作者:  61316267@qq.com   
作者简介:  谢婉晨,2017年毕业于华南理工大学安全科学与工程专业,获得工学硕士学位。主要从事材料腐蚀与防护领域的研究。
引用本文:    
谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
XIE Wanchen, LI Jiansan. Inhibition Action and Adsorption Behavior of Sodium Lignosulphonate on Q235 Steel in Simulated Concrete Solution. Materials Reports, 2019, 33(8): 1401-1405.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17090054  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1401
1 Fedel M, Olivier M,Poelman M, et al. Progress in Organic Coatings, 2009, 66(2),118.
2 Alhozaimy A M. Cement & Concrete Composites, 2009, 31(7),470.
3 Martin F J, Olek J. Review of Scientific Instruments, 2003, 74(4),2512.
4 Saremi M, Mahallati E. Cement & Concrete Research, 2002, 32(2),1915.
5 Ormellese M, Lazzari L, Goidanich S, et al. Corrosion Science, 2009, 51(12),2959.
6 Xiang Y J, Xu W J, Xia X N, et al. Chinese Polymer Bulletin, 2010(9),99(in Chinese).
向育君, 徐伟箭, 夏新年,等.高分子通报, 2010(9),99.
7 Yi C H. Researches on the performance and corrosion inhibiting mechanism of sodium lignosulfonate.Ph.D. Thesis, South China University of Technology,China, 2005(in Chinese).
易聪华. 木质素磺酸盐的缓蚀性能及作用机理研究. 博士学位论文,华南理工大学, 2005.
8 Yuan W L, Wang P, Wang X C, et al. Chemical Industry and Enginee-ring Progress, 2013, 32(11),2713(in Chinese).
袁玮良, 王平, 王心春,等.化工进展, 2013, 32(11),2713.
9 Xiao Tao, Dang Ning, Huo Lifeng, et al. Rare Metal Materials and Engineering, 2016(6),1600(in Chinese).
肖涛, 党宁, 侯利锋,等.稀有金属材料与工程, 2016(6),1600.
10 Wang Y S. Adsorption and corrosion inhibition of several organic inhibitors on carbon steel in simulated concrete pore solution. Ph.D. Thesis,Beijing University of Chemical Technology,China, 2016(in Chinese).
王怡珊. 模拟混凝土孔隙液中几种有机缓蚀剂在碳钢表面吸附及缓蚀行为研究. 博士学位论文,北京化工大学, 2016.
11 Liu X, Liu S P. Modern Food Science and Technology, 2009, 25(12),1384(in Chinese).
刘欣, 刘淑萍.现代食品科技, 2009, 25(12),1384.
12 Azhar M E, Traisnel M, Mernari B,et al. Applied Surface Science, 2002, 185(3-4),197.
13 Cheng C J, Liu D, Zhang C. Materials Review B: Research Papers,2011, 25(12),77(in Chinese).
程昌敬,刘东, 张嫦.材料导报:研究篇, 2011, 25(12),77.
14 Wang X Q. Acta Physico-Chimica Sinica, 2007, 23(1),21.
15 Tang L, Mu G, Liu G. Corrosion Science, 2003, 45(10),2251.
16 Pang Y X, Qiu X Q, Yang D J, et al. Chemistry and Industry of Forest Products,2004, 24(4),28(in Chinese).
庞煜霞, 邱学青, 杨东杰,等.林产化学与工业, 2004, 24(4),28.
17 Ouyang X, Qiu X, Hongming L A, et al. Industrial & Engineering Chemistry Research, 2006, 45(16),5716.
18 Cizaire L, Martin J M, Mogne T L, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 238(1),151.
19 Matos M S, Hofkens J, Gehlen M H. Journal of Fluorescence, 2008, 18(5),821.
20 Zhou M S, Wang W L, Yang D J, et al. Chemical Journal of Chinese Universities,2014, 35(8),1828(in Chinese).
周明松, 王文利, 杨东杰,等.高等学校化学学报, 2014, 35(8),1828.
[1] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[2] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[3] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[4] 梅友静, 徐金霞, 蒋林华, 陈平, 谭启平. 焙烧Mg-Al水滑石水泥浆涂层对钢筋氯离子腐蚀的缓蚀性能[J]. 材料导报, 2018, 32(22): 3941-3947.
[5] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[6] 袁新建, 李慈, 汪浩东, 梁雪波, 曾丁丁, 谢朝杰. 钒、铬微合金化对高碳钢微观组织与力学性能的影响[J]. 《材料导报》期刊社, 2017, 31(8): 76-81.
[7] 蒋波, 戴光咏, 闫永明, 刘广磊, 王芝林, 王国存, 刘雅政. 具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*[J]. 《材料导报》期刊社, 2017, 31(8): 70-75.
[8] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[9] 王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed