Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2055-2061    https://doi.org/10.11896/cldb.18040053
  金属与金属基复合材料 |
碳钢表面混合与单种细菌腐蚀作用对比研究
许萍1, 任恒阳1, 魏智刚2, 汪长征1
1 北京建筑大学,城市雨水系统与水环境省部共建教育部重点实验室,水环境国家级实验教学示范中心,北京 100044
2 中铁十六局集团有限公司,北京 100018
A Comparative Study on Corrosion of Mixed and Single Bacteria on Carbon Steel Surface
XU Ping1, REN Hengyang1, WEI Zhigang2, WANG Changzheng1
1 National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044
2 China Railway 16th Bureau Group Co., Ltd., Beijing 100018
下载:  全 文 ( PDF ) ( 4514KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在人工配水环境下,设置空白、大肠埃希氏菌(E. coli)、荧光假单胞菌(P. fluorescens)和混合细菌(E. coli-P. fluorescens)工况,对碳钢试片进行腐蚀实验。通过腐蚀失重法、电化学测试、扫描电镜(SEM)、原子力显微镜(AFM)、微生物活性ATP、微电极、X射线衍射(XRD)和红外光谱等技术研究了单种细菌E. coliP. fluorescens和混合细菌E. coli-P. fluorescens在碳钢表面的腐蚀行为及其变化。实验结果表明,与空白工况相比,碳钢的腐蚀速率在E. coli工况下增加了27.01%,P. fluorescens工况下降低了48.92%,E. coli-P. fluorescens工况下降低了37.46%。混合细菌工况下,碳钢界面形成了以P. fluorescens为主的网状生物膜结构,腐蚀产物类型、官能团、电化学行为、溶解氧性质等也更接近P. fluorescens工况,说明在两种细菌共同作用中,P. fluorescens占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许萍
任恒阳
魏智刚
汪长征
关键词:  微生物腐蚀  混合细菌  大肠埃希氏菌  荧光假单胞菌  碳钢    
Abstract: The purpose of the present work is to simulate and comparatively study the microbiologically influenced corrosion on the carbon steel surface. In the artificial water environment, blank, E. coli, P. fluorescens and E. coli-P. fluorescens conditions were set. Carbon steel coupons were placed in the four experimental device and corrosion experiments were carried out. Corrosion behavior and the changes of carbon steel inf-luenced by single bacteria and mixed bacteria were investigated by corrosion weight loss method, electrochemical measurement, AFM, SEM, ATP, microelectrode technology, X-ray diffraction and infrared spectroscopy. The experimental results showed that compared with the average corrosion rate in the blank condition, the E. coli condition increases by 27.01%, the P. fluorescens condition and E. coli-P. fluorescens condition decrease by 48.92% and 37.46%, respectively. In the mixed bacteria condition, there forms a reticular biofilm structure dominated by P. fluorescens at the carbon steel interface, and the corrosion product types, functional groups, electrochemical behavior, and dissolved oxygen are more similar to those under the P. fluorescens condition. This indicated that P. fluorescens exerts the dominant role in the interaction between the two kinds of bacteria.
Key words:  microbiologically influenced corrosion    mixed bacteria    Escherichia coli    Pseudomonas fluorescens    carbon steel
                    发布日期:  2019-05-31
ZTFLH:  TU991.38  
基金资助: 国家自然科学基金(51578035);北京市属高校基本科研业务费专项资金(X18257;X18256);北京建筑大学研究生创新项目(PG2018043)
通讯作者:  xuping@bucea.edu.cn   
作者简介:  许萍,北京建筑大学,教授。2013年毕业于北京交通大学市政工程专业,获博士学位。主要从事水资源再利用理论与技术,管道微生物腐蚀与控制技术等研究。承担包括国家自然科学基金、国家重大水专项等在内的科研项目近30项,在国内外重要期刊发表文章70余篇。
引用本文:    
许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
XU Ping, REN Hengyang, WEI Zhigang, WANG Changzheng. A Comparative Study on Corrosion of Mixed and Single Bacteria on Carbon Steel Surface. Materials Reports, 2019, 33(12): 2055-2061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040053  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2055
1 Basheer R, Ganga G, Chandran R K, et al. Applied Microbiology & Biotechnology, 2013, 97(12),5615.
2 Castaneda H, Benetton X D. Corrosion Science, 2008, 50(4),1169.
3 Li H, Zhou E, Ren Y, et al. Corrosion Science, 2016, 111,811.
4 Xu D, Xia J, Zhou E, et al. Bioelectrochemistry, 2017, 113,1.
5 Hall-Stoodley L, Costerton J W. Nature Reviews Microbiology, 2004, 2(2),95.
6 Sun X J, Gao C H, Huang Q Y,et al. Journal of Agricultural Resources and Environment,2017, 34(1),6 (in Chinese).
孙晓洁, 高春辉, 黄巧云,等. 农业资源与环境学报, 2017, 34(1),6.
7 Flemming H C, Wingender J. Nature Reviews Microbiology, 2010, 8(9),623.
8 Ping L.Resarch of structure characteristics and corrosion property of microbial communities in a simulated reclaimed water distribution system.Master’s Thesis, Beijing University of Civil Engineering and Architecture,China,2016(in Chinese).
彭力. 再生水模拟管网中微生物群落结构特征及其腐蚀相关性研究.硕士学位论文,北京建筑大学, 2016.
9 Dec W, Jaworska-Kik M, Simka W, et al. Materials & Corrosion, 2017,69,1.
10Liu H, Fu C, Gu T, et al. Corrosion Science, 2015, 100,484.
11Zhang H, Tian Y, Wan J, et al. Applied Surface Science, 2015, 357,236.
12San N O, Nazir H, Dönmez G. Corrosion Science, 2012, 65(4),113.
13Duan Y, Li S M, Du J, et al. Acta Physico-Chimica Sinica,2010, 26(12),3203(in Chinese).
段冶, 李松梅, 杜娟,等.物理化学学报, 2010, 26(12),3203.
14Xu P, Zhai Y J, Wang J, et al. Corrosion Science and Protection Techno-logy, 2016,28(4), 356(in Chinese).
许萍, 翟羽佳, 王婧,等.腐蚀科学与防护技术, 2016, 28(4),356.
15Li J, Xu Z Y, Li J Y, et al. Acta Physico-Chimica Sinica, 2010, 26(10),2638(in Chinese).
李进, 许兆义, 李久义,等.物理化学学报, 2010, 26(10),2638.
16Lin J, Yan Y G, Chen G Z, et al. Journal of Electrochemistry,2006, 12(1),93(in Chinese).
林晶, 阎永贵, 陈光章,等. 电化学, 2006, 12(1),93.
17Wu F. Effect of concentration rate of power plant circulating cooling water on SRB biofilm corrosion to metal. Master’s Thesis, Beijing Jiaotong University,China,2016 (in Chinese).
吴芳芳. 发电厂循环水浓缩倍率对不锈钢表面SRB生物膜腐蚀的影响研究.硕士学位论文,北京交通大学, 2016.
18Santosh Kr.Karn, Xin Z, Duan J Z. In:2014 Convention on Corrosion and Protection of Marine Material.China,2014.
19Yin L, Zhao D, Zhang S J, et al. Chinese Journal of Environmental Engineering, 2016, 10(10),5453(in Chinese).
尹朗, 赵丹, 张素佳,等. 环境工程学报, 2016, 10(10),5453.
20Xu P, Gao F, Zhai Y J, et al. Surface Technology,2017, 46(7),13(in Chinese).
许萍, 高飞, 翟羽佳,等.表面技术, 2017, 46(7),13.
21Yang S S, Huang Q Y, Cai P. Chinese Journal of Biotechnology, 2017,33(9),1399(in Chinese).
杨闪闪, 黄巧云, 蔡鹏.生物工程学报, 2017, 33(9),1399.
22Liu H, Gu T, Asif M, et al. Corrosion Science, 2017, 114,102.
23Ke R. International Journal of Electrochemical Science, 2016, 11(9),7461.
24Xu C M, Zhang X,Luo L H. Materialy Protection,2017,50(6),40(in Chinese).
胥聪敏,张璇,罗立辉.材料保护,2017,50(6),40.
25Zhao Y L, Yang H W, Song H L,et al.Microbiology China,2017,44(11),2714(in Chinese).
赵奕良,杨慧文,宋浩亮,等.微生物学通报,2017,44(11),2714.
26Li L, Zhang Q Q, Ma B. Journal of Hydroelectric Engineering, 2017, 36(1),34(in Chinese).
李玲, 张晴晴, 马波.水力发电学报, 2017, 36(1),34.
27Duan D X, Chen X G,Lin C G. Journal of Chinese Society for Corrosion and Protection, 2011, 31(6),453(in Chinese).
段东霞, 陈西广, 蔺存国.中国腐蚀与防护学报, 2011, 31(6),453.
28Liu H W, Liu H F. Journal of Chinese Society for Corrosion and Protection,2017, 37(3),195(in Chinese).
刘宏伟, 刘宏芳.中国腐蚀与防护学报, 2017, 37(3),195.
29Liu H, Gu T, Zhang G, et al. Corrosion Science, 2016, 102,93.
30Welbourn R J L, Truscott C L, Skoda M, et al. Corrosion Science, 2016, 115,68.
31Wu T Q, Yang P, Zhang M D, et al.Journal of Chinese Society for Corrosion and Protection,2014, 34(4),353(in Chinese).
吴堂清, 杨圃, 张明德,等. 中国腐蚀与防护学报, 2014, 34(4),353.
32Dong Z H, Liu T, Liu H F. Biofouling, 2011, 27(5),487.
[1] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[2] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[3] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[4] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[5] 袁新建, 李慈, 汪浩东, 梁雪波, 曾丁丁, 谢朝杰. 钒、铬微合金化对高碳钢微观组织与力学性能的影响[J]. 《材料导报》期刊社, 2017, 31(8): 76-81.
[6] 蒋波, 戴光咏, 闫永明, 刘广磊, 王芝林, 王国存, 刘雅政. 具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*[J]. 《材料导报》期刊社, 2017, 31(8): 70-75.
[7] 谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
[8] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[9] 王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed