Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2062-2066    https://doi.org/10.11896/cldb.18040219
  金属与金属基复合材料 |
回火温度对CB2钢的含硼M23C6相析出及力学性能的影响
江旭, 马煜林, 刘越
东北大学材料科学与工程学院,沈阳 110819
Effect of Tempering Temperature on Precipitation and Mechanical Properties of Boron-containing M23C6 Phase in CB2 Steel
JIANG Xu, MA Yulin, LIU Yue
School of Materials Science and Engineering, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 4334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究含硼的M23C6相的析出行为对CB2钢力学性能的影响,对含硼的CB2钢分别进行了690 ℃、710 ℃、730 ℃、750 ℃、770 ℃和790 ℃的回火处理。通过OM、SEM和TEM等观察含硼的M23C6相在690—790 ℃回火温度中的析出行为,借助Thermo-Calc阐明回火温度对M23C6相析出行为的影响机制,结合硬度和室温拉伸等性能测试研究CB2钢中M23C6相析出行为对其性能的影响规律,确定最佳回火温度。研究发现:随着回火温度的升高,CB2钢中马氏体板条逐渐变宽,板条马氏体转变为多边形铁素体;M23C6相的平均尺寸从132.19 nm增加到197.62 nm,当回火温度超过750 ℃时,M23C6相的增大速度明显加快;CB2钢的强度和硬度降低,伸长率和断面收缩率增加;当回火温度为730 ℃时CB2钢的综合性能较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江旭
马煜林
刘越
关键词:  金属材料  M23C6  回火温度  马氏体耐热钢    
Abstract: In order to study the influence of the precipitation behavior of boron-stabilized M23C6 phase on the mechanical properties, the CB2 steel containing boron was tempered at 690 ℃, 710 ℃, 730 ℃, 750 ℃, 770 ℃ and 790 ℃, respectively. The precipitation behavior of boron-stabilized M23C6 phase at tempering temperature from 690 ℃ to 790 ℃ was observed by OM, SEM and TEM. The effect of tempering temperature on the precipitation behavior of M23C6 phase was clarified by means of Thermo-Calc. Combined with hardness and room temperature stretching perfor-mance test, the influence law of precipitation behavior of M23C6 phase in CB2 steel on performance was studied to determine the best tempering temperature. The results show that as the tempering temperature increases, martensite in CB2 steel gradually broadens and martensite lath changes to ferrite. The average size of M23C6 phase increased from 132.19 nm to 197.62 nm. When the tempering temperature exceeded 750 ℃, the increase of M23C6 accelerated obviously. The strength and hardness of CB2 steel decreased, while the elongation and reduction of area increased. When the tempering temperature was 730 ℃, CB2 steel had better overall performance.
Key words:  metallic materials    M23C6 phase    tempering temperature    martensite heat resistant steel
                    发布日期:  2019-05-31
ZTFLH:  TG27  
基金资助: 国家自然科学基金重点项目(51334004);辽宁省科技重大专项(201404001)
通讯作者:  dbdx555@163.com   
作者简介:  江旭,2019年1月毕业于东北大学,获得工学硕士学位。于2016年6月至2019年1月在东北大学培养学习,主要从事新型铁素体耐热钢铁素体热处理领域的研究。刘越,东北大学材料学院教授,博士。主要研究方向为高性能金属基复合材料、金属耐磨材料及制备技术。
引用本文:    
江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
JIANG Xu, MA Yulin, LIU Yue. Effect of Tempering Temperature on Precipitation and Mechanical Properties of Boron-containing M23C6 Phase in CB2 Steel. Materials Reports, 2019, 33(12): 2062-2066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040219  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2062
1 Gupta G, Was G S. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 2008, 39A(1), 150.
2 Abe F. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 2003, 34A(4), 913.
3 Li Junru, Zhang Chaolei, Jiang Bo, et al. Journal of Alloys and Compounds, 2016, 685, 248.
4 Hassan Ghassemi Armaki, Ruiping Chen, Kouichi Maruyama, et al. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 2011, 42A(10), 3084.
5 Kostka A, Tak K G, Hellmig R J, et al. Acta Materialia, 2007, 55(2), 539.
6 Dmitro Kolesnikov, Andrey Belyakov, Alla Kipelova, et al. Recrystallization and Grain Growth IV, 2012, 715, 745.
7 Aghajani A, Somsen C, Eggeler G. Acta Materialia, 2009, 57(17), 5093.
8 Payton E J, Aghajani A, Otto F, et al. Scripta Materialia, 2012, 66(12), 1045.
9 Liu Y, Ma Y L, Guo H, et al. Materials Review A:Review Papers, 2015,29(7),18 (in Chinese)
刘越, 马煜林, 郭浩,等. 材料导报:综述篇, 2015,29(7),18.
10Jandova D, Kasl J, Chvostova E. Metallography XV, 2014, 782,311.
11Viswanathan R, Shingledecker J, Hawk J, et al. In: International Conference on Creep and Fracture in High Temperature Components (2nd ECCC Creep Conference). Zurich, Switzerland,2009, pp.31.
12Vanstone R, Chilton I, Jaworski P. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 2013, 135(6).062101-1.
13Staubli M, Hanus R, Weber T, et al. In: Proceedings of the 8th Liège Conference. Université de Liège, 2006,pp.855.
14Kasl J, Mikmekova S, Jandova D. IOP Conference Series: Materials Science and Engineering, DOI: 10.1088/1757-899X/55/1/012008.
15Korcakova L, Hald J, Somers M A J. Materials Characterization, 2001, 47(2),111.
16Zheng Y, Wang F, Li C, et al. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2017, 701, 45.
17Isik M I,Kostka A,Yardley V A, et al. Acta Materialia, 2015, 90, 94.
18Baumgartner S,Schuler M,Holy A, et al. Welding in the World, 2015, 59(5), 655.
[1] 申琦,余森,牛金龙,汶斌斌,刘少辉,于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[2] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[3] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[4] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[5] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[6] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed