Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3414-3422    https://doi.org/10.11896/j.issn.1005-023X.2018.19.016
  金属与金属基复合材料 |
高强度超细晶金属材料塑性行为及增塑研究进展
王永强1,2,朱国辉3,陈其伟3,丁汉林4,万德成5
1 安徽工业大学材料科学与工程学院,马鞍山 243002;
2 北京科技大学新金属材料国家重点实验室,北京 100083;
3 安徽工业大学冶金工程学院,马鞍山 243032;
4 苏州大学沙钢钢铁学院,苏州 215021;
5 华北理工大学冶金与能源学院,唐山 063210
A Review on the Plastic Behavior and Improvement of Plasticity in High Strength Ultrafine-grained Metallic Materials
WANG Yongqiang1,2, ZHU Guohui3, CHEN Qiwei3, DING Hanlin4, WAN Decheng5
1 School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002;
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083;
3 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032;
4 School of Iron and Steel, Soochow University, Suzhou 215021;
5 School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 2205KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 强度和塑性是金属结构材料最重要的力学性能指标,金属高性能化的关键是在高强度水平下保证良好的塑性,然而两者往往不能兼顾。在众多强化方法中,晶粒细化长期以来被认为是强化金属最理想的手段,在传统晶粒尺寸范围,细化晶粒既可以显著提高材料的强度,又能改善材料的塑韧性。因此,近几十年来超细晶/纳米晶金属得到了广泛研究和发展,出现了以大塑性变形(SPD)、先进形变热处理(ATMP)技术为代表的超细晶制备方法,所得晶粒可以细化到亚微米或纳米尺度,金属性能大大提高。
然而,大量研究证实当晶粒细化到亚微米或纳米尺度时金属强度提高但塑性显著下降,与传统的细晶强化规律不符。对此,国内外学者进行了很多研究,试图阐明其机理、揭示晶粒超细化导致塑性降低的物理本质。此外,由于细化晶粒方法受到塑性的限制,新的高强度水平下增强塑性的方法成为钢铁材料高性能化的研究热点。针对塑性下降的事实,为了进一步提高超细晶金属材料性能,研究者开展了许多增强塑性的工作,获得了较好的效果,但仍存在一些不足。
关于金属晶粒超细化导致塑性降低的普遍共性现象,目前广泛认可的理论主要有晶界捕获(吸收)位错的动态回复理论、位错运动湮灭理论、高初始位错密度以及位错源缺失机制等。前三者都主要关注超细晶金属材料低(无)加工硬化能力,并将其归结为延伸率降低所致。主要是因为低(无)加工硬化使材料在变形早期发生塑性失稳或局部变形从而表现出低塑性。超细晶金属增塑研究主要体现在增塑方法和机理方面,目前,增塑方法主要有(1)形成纳米孪晶;(2)获得粗晶-细晶双峰组织;(3)利用相变诱发塑性/孪生诱发塑性(TRIP/TWIP)效应;(4)引入铁素体软相;(5)利用纳米第二相粒子等。这些增塑方法的主要机理是利用组织结构的改变提高超细晶金属的加工硬化能力以维持良好的均匀塑性变形以及利用组织相变提高塑性。
本文归纳了常用的超细晶金属制备方法,综述了超细晶金属材料塑性降低的研究进展,总结了超细晶金属增塑的研究结果,分析了目前研究中存在的不足,探讨了超细晶金属增强增塑的发展趋势,以期为超细晶金属塑性降低理论及增强增塑研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永强
朱国辉
陈其伟
丁汉林
万德成
关键词:  超细晶金属材料  塑性行为  加工硬化  塑性增强    
Abstract: Strength and plasticity are the most important mechanicalproperties of structural materials. The key to high performance steels is to ensure favorable ductilityat high strength level.However, a metallic material cannot gain high ductility and high strength at the same time.Among the strengthening methods, grain refining has long been considered as the most ideal means for strengthening metals. It has been widely recognized that metals and alloys with refined grains generally exhibit substantially higher strength and ductility than their crystalline counterparts with coarse grains. Therefore, extensive researches on ultrafine-grained/nanocrystalline metallic materialshave been conducted over the past decades. The preparation method of ultrafine grain, represented by severe plastic deformation (SPD) and advanced thermomechanical processing (ATMP) technology, has been developed, which can refine the grain size to submicron or nanometer scale and greatly improve the metal properties.
However, a large number of studies have confirmed that the strength of the metal increases but the plasticity decreases drama-tically when the grain is refined to submicron or nanometer size, which is not consistent with the traditional law of grain refining strengthening. In regard to this phenomenon, on one hand, lots of works at home and abroad have been carried out to reveal or elucidate the mechanism of plasticity decrease caused by grain refining. Besides, because grain refining cannot guaranty good ductility of steels at highstrength level, it has been a hot topic to develop new means for strength and ductility improvement. In recent years, many techniques have been proposed for enhancing the property of ultrafine-grained materials and gratifying results have been achieved, but there are still some shortcomings.
At present, theories including dynamic recovery, dislocation annihilation, high initial dislocation density and dislocation source deletion mechanism are widely adopted to explain the decrease of plasticity of ultrafine-grained materials. The former three theories mainly focus on the low or absence of work hardening and ascribe the low or absence of work hardening to the reason of poor ductility, because the plastic instability (necking) or strain localization of materials could occur at early stage of deformation due to the low or absence of work hardening, resulting in poor elongation plasticity. At present, the studies of improving plasticity of ultrafine-grained metallic materials primarily focus on plasticizing methods and mechanisms. Which include the formation of nanoscale twins in materials, obtaining coarse/fine bimodal grain structure, TRIP/TWIP effective, formation of soft ferrite phase in hard matrix phase and precipitation of nanoscale second dispersed precipitates, etc. The mechanism of these methods is to improve the work hardening ability of ultrafine-grained metal by changing the structure, so as to maintain good uniform plastic deformation or improve the plasticity by phase transformation.
This review introduces the preparation methods of ultrafine-grained metallic materials, offers a retrospection of the research efforts to the plastic behavior and improvement of plasticity, analyze the insufficiency of previous works, and then discusses the trend and prospective of research on the ductility improvement of ultrafine-grained materials. It is expected to provide the inspiration and reference for the research on mechanism of plasticity decrease and ductility improvement.
Key words:  ultrafine-grained metallic materials    plasticity behavior    work hardening    improvement of plasticity
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG14  
基金资助: 新金属材料国家重点实验室开放基金(2016-Z02);河北省自然科学基金(E2016209166)
作者简介:  王永强:男,1982年生,副教授,硕士研究生导师,主要从事高性能钢铁材料的研究 E-mail:yqwang@ahut.edu.cn;
引用本文:    
王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
WANG Yongqiang, ZHU Guohui, CHEN Qiwei, DING Hanlin, WAN Decheng. A Review on the Plastic Behavior and Improvement of Plasticity in High Strength Ultrafine-grained Metallic Materials. Materials Reports, 2018, 32(19): 3414-3422.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.016  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3414
1 Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels[J].Materials Science and Engineering A,2006,441(1-2):1.
2 Cheng S, Spencer J A,Milligan W W. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals[J].Acta Materialia,2003,51(15):4505.
3 Yu C Y, Kao P W,Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum[J].Acta Materialia,2005,53(15):4019.
4 Valiev R Z. Structure and mechanical properties of ultrafine-grained metals[J].Materials Science and Engineering A,1997,234-236:59.
5 Segal V M. Equal channel angular extrusion: From macromechanics to structure formation[J].Materials Science and Engineering A,1999,271(1-2):322.
6 Valiev R Z,Langdon T G. Principles of equal-channel angular pres-sing as a processing tool for grain refinement[J].Progress in Mate-rials Science,2006,51(7):881.
7 Hosseini S A,Manesh H D. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process[J].Materials and Design,2009,30(8):2911.
8 Naseri M, Reihanian M, Borhani E. Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)[J].Materials Science and Engineering A,2016,673:288.
9 Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J].Scripta Materialia,2002,47(12):893.
10 Ivanisenko Y, Wunderlich R K, Valiev R Z, et al. Annealing beha-viour of nanostructured carbon steel produced by severe plastic deformation[J].Scripta Materialia,2003,49(10):947.
11 Ivanisenko Y, Lojkowski W, Valiev R Z, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion[J].Acta Materialia,2003,51(18):5555.
12 Valiev R Z, Islamgaliev R K,Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science,2000,45(2):103.
13 Liu X Y, Zhao X C, Yang X R, et al. Progress in research on deformation behavior of ultrafine-grained metallic materials processed by ECAP[J].Materials Review A: Review Papers,2011,25(5):11(in Chinese).
刘晓燕,赵西成,杨西荣,等.ECAP变形制备超细晶金属材料变形行为的研究进展[J].材料导报:综述篇,2011,25(5):11.
14 Eghbali B,Abdollah-Zadeh A. Deformation-induced ferrite transformation in a low carbon Nb-Ti microalloyed steel[J].Materials and Design,2007,28(3):1021.
15 Choo W Y.First stage achievements of HIPERS-21 project and plan of second stage[C]∥Second International Conference on Advanced Structural Steels.Shanghai,2004:23.
16 Wang G D. Development of a new generation TMCP technology[J].Steel Rolling,2012,29(1):1(in Chinese).
王国栋.新一代TMCP技术的发展[J].轧钢,2012,29(1):1.
17 Erb U. Electrodeposited nanocrystals: Synthesis, properties and industrial applications[J].Nanostructured Materials,1995,6(5-8):533.
18 Gleiter H. Nanocrystalline materials[J].Progress in Materials Science,1989,33(4):223.
19 Meyers M A, Mishra A,Benson D J. Mechanical properties of nanocrystalline materials[J].Progress in Materials Science,2006,51(4):427.
20 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J].Science,2011,331:1587.
21 Cheng Y Q, Chen Z H, Xia W J, et al. Research and development of severe plastic deformation technique[J].Materials Review,2006,20(S2):245(in Chinese).
程永奇,陈振华,夏伟军,等.大塑性变形技术的研究与发展现状[J].材料导报,2006,20(S2):245.
22 Dao M, Lu L, Asaro R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J].Acta Materialia,2007,55(12):4041.
23 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J].Acta Materialia,2011,59(2):658.
24 Kumar K S, Suresh S, Chisholm M F, et al. Deformation of electrodeposited nanocrystalline nickel[J].Acta Materialia,2003,51(2):387.
25 Zhang X, Wang H, Scattergood R O, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn[J].Acta Materialia,2002,50(19):4823.
26 Hickson M R, Gibbs R K,Hodgson P D. The effect of chemistry on the formation of ultrafine ferrite in steel[J].ISIJ International,1999,39(11):1176.
27 Zhang X Y, Ma J, Cheng S X, et al. Microstructure and properties of ( B +M/A) X80 pipelinesteel with excellent deformability[J].Transactions of Materials and Heat Treatment,2014,35(S2):94(in Chinese).
张骁勇,马晶,程时遐,等.(B+M/A)X80大变形管线钢的组织与性能[J].材料热处理学报,2014,35(S2):94.
28 Hosseini S M, Alishahi M, Najafizadeh A, et al. The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing[J].Materials Letters,2012,74(5):206.
29 Park K T,Shin D H. Microstructural interpretation of negligible strain-hardening behavior of submicrometer-grained low-carbon steel during tensile deformation[J].Metallurgical and Materials Transactions A,2002,33(3):705.
30 Jin J E, Jung Y S,Lee Y K. Effect of grain size on the uniform ductility of a bulk ultrafine-grained alloy[J].Materials Science and Engineering A,2007,449-451:786.
31 Zhang X, Wang H, Scattergood R O, et al. Modulated oscillatory hardening and dynamic recrystallization in cryomilled nanocrystalline Zn[J].Acta Materialia,2002,50(16):3995.
32 Yu C Y, Sun P L, Kao P W, et al. Mechanical properties of submicron-grained aluminum[J].Scripta Materialia,2005,52(5):359.
33 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J].Nature,2002,419:912.
34 Xue P, Xiao B L,Ma Z Y. High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J].Materials Science and Enginee-ring A,2012,532:106.
35 Budrovic Z, Swygenhoven H V, Derlet P M, et al. Plastic deformation with reversible peak broadening in nanocrystalline nickel[J].Science,2004,304:273.
36 Swygenhoven H V. Grain boundaries and dislocations[J].Science 2002,296:66.
37 Swygenhoven H V, Derlet P M,Frseth A G. Nucleation and propagation of dislocations in nanocrystalline fcc metals[J].Acta Materialia,2006,54(7):1975.
38 Frseth A G, Derlet P M,Swygenhoven H V. Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance[J].Acta Materialia,2004,52(20):5863.
39 Tang H, Schwarz K W,Espinosa H D. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression[J].Acta Materialia,2007,55(5):1607.
40 Rao S I, Dimiduk D M, Parthasarathy T A, et al. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations[J].Acta Materialia,2008,56(13):3245.
41 Zhuang Z, Cui Y N, Gao Y, et al. Advances in discrete dislocation mechanism onsubmicro crystal atypical plasticity[J].Advances in Mechanics,2011,41(6):647(in Chinese).
庄茁,崔一南,高原,等.亚微米尺度晶体反常规塑性行为的离散位错研究进展[J].力学进展,2011,41(6):647.
42 Park K T, Kim Y S, Lee J G, et al. Thermal stability and mechanical properties of ultrafine grained low carbon steel[J].Materials Science and Engineering A,2000,293(1-2):165.
43 Wang Y M,Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals[J].Materials Science and Engineering A,2004,375-377:46.
44 Jia D, Wang Y M, Ramesh K T, et al. Deformation behavior and plastic instabilities in ultrafine-grained Ti[J].Applied Physics Letters,2001,79(5):611.
45 Sinclair C W, Poole W J,Bréchet Y. A model for the grain size dependent work hardening of copper[J].Scripta Materialia,2006,55(8):739.
46 Wang Y M,Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal[J].Acta Materialia,2004,52(6):1699.
47 Lu K. Making strong nanomaterials ductile with gradients[J].Science,2014,345:1455.
48 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J].Science,2017:357(6355):1029.
49 Liu J, Zhu G, Mao W, et al. Modeling of critical grain size for shif-ting plasticity enhancement to decrease by refining grain size[J].Materials Science and Engineering A,2014,607:302.
50 Liu J, Zhu G H. Model of the effect of grain size on plasticity in ultra-fine grain size steels[J].Acta Metallurgica Sinica,2015,51(7):777(in Chinese).
刘觐,朱国辉.超细晶粒钢中晶粒尺寸对塑性的影响模型[J].金属学报,2015,51(7):777.
51 Lu L, Lu K. Metallic materials with nano-scale twins[J].Acta Me-tallurgica Sinica,2010,46(11):1422(in Chinese).
卢磊,卢柯.纳米孪晶金属材料[J].金属学报,2010,46(11):1422.
52 Lu L, Schwaiger R, Shan Z W, et al. Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J].Acta Materialia,2005,53(7):2169.
53 Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins[J].Scripta Materialia,2005,52(10):989.
54 Dao M, Lu L, Shen Y F, et al. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins[J].Acta Materialia,2006,54(20):5421.
55 Lu K, Zhang Z F, Lu L, et al. Summary and outlook of the major project "Design and peparation of multi-scale structure for strengthening and toughening of metallic materials"[J].Bulletin of National Natural Science Foundation of China,2013,2:70(in Chinese).
卢柯,张哲峰,卢磊,等.国家自然基金重大项目“金属材料强韧化的多尺度结构设计与制备”结题综述[J].中国科学基金,2013,2:70.
56 Wang T S, Li Z, Zhang B, et al. High tensile ductility and high strength in ultrafine-grained low-carbon steel[J].Materials Science and Engineering A,2010,527(10-11):2798.
57 Ishikawa Nobuyuki, Shikanai Nobuo,Kondo Joe. Development of ultra-high strength line pipes with dual-phase microstructure for high strain application[J].JFE Technical Report,2008,12:15.
58 Liu J. Research of enhancement mechanism of plasticity of X80 pipline steel[D].Beijing: University of Science and Technology Beijing,2015(in Chinese).
刘觐.X80管线钢的塑性增强机制研究[D].北京:北京科技大学,2015.
59 Avishan B, Garcia-Mateo C, Yazdani S, et al. Retained austenite thermal stability in a nanostructured bainitic steel[J].Materials Characterization,2013,81(4):105.
60 Xie Z J. Study of retained austenite regulation and mechanical pro-perties in low carbon low alloy high performance steels[D].Beijing: University of Science and Technology Beijing,2016(in Chinese).
谢振家.髙性能低合金钢中残余奥氏体调控机理及性能研究[D].北京:北京科技大学,2016.
61 Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel[D].Acta Metallurgica Sinica,2016,52(2):224(in Chinese).
谢振家,尚成嘉,周文浩,等.低合金多相钢中残余奥氏体对塑性和韧性的影响[J].金属学报,2016,52(2):224.
62 Cao W Q, Shi J, Wang C, et al. The 3rd generation automobile sheet steels presenting with ultrahigh strength and high ductility[M].Springer,2011:209.
63 Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical pro-perties in ultrafine-grained steels with large-fractioned metastable austenite[J].Scripta Materialia,2010,63(8):815.
64 Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J].Iron and Steel,2011,46(6):1(in Chinese).
董瀚,曹文全,时捷,等.第3代汽车钢的组织与性能调控技术[J].钢铁,2011,46(6):1.
65 Sohn S S, Song H, Jo M C, et al. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels[J].Scientific Reports,2017,7(1):1255.
66 Liu X M, Liu W, Liu J W, et al. Current situation of the TWIP steel[J].Materials Review A: Review Papers,2010,24(6):102(in Chinese).
刘向海, 刘薇, 刘嘉斌, 等. 孪生诱发塑性(TWIP)钢的研究现状[J].材料导报:综述篇,2010,24(6):102.
67 Gao G, Zhang H, Gui X, et al. Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process[J].Acta Materialia,2015,101:31.
68 Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys[J].Advanced Mate-rials,2006,18:2280.
69 Song M, Zhu R, Foley D C, et al. Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments[J].Journal of Materials Science,2013,48:7360.
70 Yang G, Huang C X, Wang C, et al. Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing[J].Materials Science and Engineering A,2009,515(1-2):199.
71 Torizuka S, Muramatsu E, Narayana Murty S V S, et al. Microstructure evolution and strength-reduction in area balance of ultrafine-grained steels processed by warm caliber rolling[J].Scripta Materialia,2006,55(8):751.
72 NANOSTEEL. https:∥nanosteelco.com/products/sheet-steel/new-class-of-steel.
73 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J].Nature,2017,544,460.
[1] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[2] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[3] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[4] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[5] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed