Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2738-2742    https://doi.org/10.11896/j.issn.1005-023X.2018.16.007
  无机非金属及其复合材料 |
球磨时间对FeSi合金吸波性能的影响
周影影1,2, 谢辉1, 陶世平1, 周万城2
1 西安航空学院材料工程学院,西安 710077;
2 西北工业大学材料学院,西安 710072
Effect of Milling Time on Microwave Absorbing Property of FeSi Alloy
ZHOU Yingying1,2, XIE Hui1, TAO Shiping1, ZHOU Wancheng2
1 Department of Materials Engineering, Xi’an Aeronautical University, Xi’an 710077;
2 Department of Materials, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 3045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用湿法球磨对FeSi合金粉末进行片状化改性,利用扫描电子显微镜(SEM)、激光粒度分析仪、矢量网络分析仪对改性前后的FeSi粉末进行测试分析,研究不同球磨时间对FeSi粉末的形貌、粒径、电磁参数、吸波性能的影响。结果表明,随着球磨时间的延长,FeSi粉末的粒径逐渐减小,且扁平化程度增加。模拟反射率结果表明,当球磨时间为8 h时,材料在测试频段内吸收值低于-15 dB的频宽为2.8 GHz,且在10.5 GHz处达到最低吸收峰值-28.3 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周影影
谢辉
陶世平
周万城
关键词:  金属材料  吸波性能  湿法球磨  球磨时间  FeSi合金    
Abstract: FeSi powder was modified by wet milling with different milling time. The morphology, particle size, electromagnetic parameters and wave absorbing properties were characterized by scanning electron microscope (SEM), laser particle size analyzer and vector network analyzer, respectively. The results show that the average particle size of FeSi powder decrease and the level of flattening increase with the increase of milling time. The simulated reflectivity results show that when the milling time is 8 h, the bandwidth of the absorption value under -15 dB is 2.8 GHz, and the minimum absorption peak value at 10.5 GHz is -28.3 dB.
Key words:  metallic materials    microwave absorption property    wet milling    milling time    FeSi alloy
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51402239;51701148)
作者简介:  周影影:女,1989年生,博士,讲师,主要从事磁性吸波材料等研究 E-mail:zyzlchappy1989@163.com
引用本文:    
周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
ZHOU Yingying, XIE Hui, TAO Shiping, ZHOU Wancheng. Effect of Milling Time on Microwave Absorbing Property of FeSi Alloy. Materials Reports, 2018, 32(16): 2738-2742.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.007  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2738
1 Zhang B, Lu G, Feng Y, et al. Electromagnetic and microwave absorption properties of alnico powder composites[J]. Journal of Magnetism and Magnetic Materials,2006,299(1):205.
2 Zhou Y Y, Zhou W C, Qing Y C, et al. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites[J]. Journal of Magnetism and Magnetic Materials,2015,374:345.
3 Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters,2006,89:732.
4 Fan Y, Yang H, Li M, et al. Evaluation of the microwave absorption property of flake graphite[J]. Materials Chemistry and Physics,2009,115:696.
5 Maeda T, Sugimoto S, Kagotani T, et al. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds[J]. Journal of Magnetism and Magnetic Materials,2004,281:195.
6 Huang X, Zhang J, Xiao S, et al. Unique electromagnetic properties of the zinc ferrite nanofiber[J]. Materials Letters,2014,124:126.
7 Zhao X, Zhang Y L, Wang X X, et al. Enhanced microwave absorption properties of NiFe2O4 nanocrystal deposited reduced graphene oxides[J]. Journal of Materials Science: Materials in Electronics,2016,27(11):11518.
8 Huang X, Zhang J, Wang W, et al. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method[J]. Journal of Magnetism and Magnetic Materials,2016,405:36.
9 Huang X, Zhang J, Liu Z, et al. Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 compo-site microrods[J]. Journal of Alloys and Compounds,2015,648:1072.
10 Huang Y, Qi Q, Pan H, et al. Facile preparation of octahedral Fe3O4/RGO composites and its microwave electromagnetic properties[J]. Journal of Materials Science,2016,9:1.
11 Huang X, Chen Y, Yu J, et al. Fabrication and electromagnetic loss properties of Fe3O4 nanofibers[J]. Journal of Materials Science,2015,26:3474.
12 Han R, Qiao L, Wang T, et al. Microwave complex permeability of planar anisotropy carbonyl-iron particles[J]. Journal of Alloys and Compounds,2011,509:2734.
13 Fan M, He Z F, Pang H. Microwave absorption enhancement of CIP/PANI composites[J]. Synthetic Metals,2013,166:1.
14 Qing Y C, Zhou W C, Luo F, et al. Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings[J]. Journal of Magnetism and Magnetic Materials,2009,321:25.
15 Zhou T D, Liang D F, Deng L J, et al. Electron structure and microwave absorbing ability of flaky FeSiAl powders[J]. Journal of Materials Science & Technology,2011,27(2):170.
16 Qin H. Preparation and performance research of flake absorbing materials on FeSi magnetic alloy [D]. Xi’an: Xi’an University of Architecture and Technology,2014(in Chinese).
秦浩.FeSi系合金片状吸波材的制备及性能的研究[D].西安:西安建筑科技大学,2014.
17 Qin H, Jin D, Sun K W, et al. Microwave absorbing properties of flattened FeSiAl magnetic powder[J]. Hot Working Technology,2013,42(18):42(in Chinese).
秦浩,金丹,孙可为,等.扁平状FeSiAl磁粉吸波性能的研究[J].热加工工艺,2013,42(18):42.
18 Liu C, Yuan Y, Jiang J T, et al. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process[J]. Journal of Magnetism and Magnetic Materials,2015,395:152.
19 Liu Y, Li Y Y, Luo F, et al. Electromagnetic and microwave absorption properties of flaky FeCrAl particles[J]. Journal of Mate-rials Science: Materials in Electronics,2017,28:6619.
20 Liu X W, Zheng J T, Li C H, et al. Optimization on wet ball milling conditions for alumina powder[J]. Bulletin of the Chinese Ceramic Society,2013,32(5):777(in Chinese).
刘学文,郑经堂,李长海,等.氧化铝粉体湿法球磨参数优化[J].硅酸盐通报,2013,32(5):777.
21 Liu L D, Duan Y P, Guo J B, et al. Influence of particle size on the electromagnetic and microwave absorption properties of FeSi/paraffin composites[J]. Physica B,2011,406:2261.
22 Li Z, Xu B C, Wang J J, et al. Research on the preparation of flaky shape FeSi alloy and its low frequency microwave absorbing properties[J]. Journal of Ordnance Engineering College,2016,28(6):64(in Chinese).
李泽,许宝才,王建江,等.片状Fe-Si合金的制备及其低频吸波性能研究[J].军械工程学院学报,2016,28(6):64.
23 Zhou Y, Qiu T, Feng Y B. Effect of flattening on the microwave electromagnetic properties of FeSi microwave absorbing materials[J]. Electronic Components and Materials,2010,29(4):31(in Chinese).
周熠,丘泰,冯永宝.扁平化对FeSi吸波材料微波电磁性能的影响[J].电子元件与材料,2010,29(4):31.
24 Deng L W, Xiong W H, Feng Z K, et al. Microwave absorbing capability of FeSi nano-crystalline flakes[J]. Electronic Components and Materials,2006,25(9):31(in Chinese).
邓联文,熊惟皓,冯则坤,等.FeSi纳米晶片状微波吸收剂研究[J].电子元件与材料,2006,25(9):31.
25 Xu Y G, Yuan L M, Cai J, et al. Effects of particle sizes on the electromagnetic property of flaky FeSi composites[J]. Acta Metallurgica Sinica (English Letters),2013,26(4):366.
26 Dan C, Liu X, Yu R, et al. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites[J]. Composites Part A: Applied Science and Manufacturing,2016,89:33.27 Khamman O, Chaisan W, Yimnirun R, et al. Effect of vibro-milling time on phase formation and particle size of lead zirconate nanopowders[J]. Materials Letters,2007,61:2822.
28 Xiong X. The size effects of Fe-based nanocrystallines on the microwave properties and the flake processing [D].Wuhan: Wuhan University of Technology,2011(in Chinese).
熊新.颗粒尺寸对铁基纳米晶微波电磁性能及片状化进程的影响[D].武汉:武汉理工大学,2011.
29 Wen F S, Zuo W L, Yi H B, et al. Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability[J]. Physica B,2009,404:3567.
30 Kim S S, Kim S T, Yoon Y C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies[J]. Journal of Applied Physics,2005,97:10F905.
31 Qing Y C, Zhou W C, Luo F, et al. Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption[J]. Journal of Magnetism and Magnetic Materials,2011,323:600.
32 Zhou Y Y, Zhou W C, Li R, et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J]. Journal of Alloys and Compounds,2011,637:10.
33 Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics[J]. IEEE Transactions on Microwave Theory and Techniques,1971,19:65.
[1] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[2] 申琦,余森,牛金龙,汶斌斌,刘少辉,于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[3] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[4] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[5] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[6] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[7] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[8] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed