Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 749-754    https://doi.org/10.11896/j.issn.1005-023X.2018.05.010
  材料综述 |
羰基铁粉抗氧化性能研究现状
周影影1, 2, 谢辉1, 周万城2
1 西安航空学院材料工程学院, 西安 710077;
2 西北工业大学凝固技术国家重点实验室, 西安 710072
Current Research Status of Oxidation Resistance of Carbonyl Iron Powders
ZHOU Yingying1,2, XIE Hui1, ZHOU Wancheng2
1 School of Material Engineering, Xi’an Aeronautical University, Xi’an 710077;
2 State Key Laboratory of
Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1535KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 羰基铁粉具有高磁导率和高磁损耗等优良特性,被认为是薄层吸波涂层吸收剂的理想材料。加之,羰基铁粉的居里温度较高,有望成为薄层耐温吸波涂层的吸收剂。但是,羰基铁粉由于颗粒尺寸较小,颗粒表面积较大,在高温下的抗氧化性较差,近年来有关其抗氧化性能的研究已成为备受关注的热点。本文概述了羰基铁粉吸收电磁波的机制以及提高抗氧化性能的机理,介绍了几种有助于提高其抗氧化性能的制备方法,最后展望了这一领域的研究前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周影影
谢辉
周万城
关键词:  羰基铁粉  抗氧化性  吸波性能    
Abstract: Carbonyl iron powder is considered as an ideal absorber for thin absorbing coating, due to its excellent properties such as high permeability and high magnetic loss. Additionally, high Curie temperature makes carbonyl iron powders a potential candidate for the absorbent of heat-resistant absorbing coating. However, the small particle size and large surface area largely cause severe oxidation while suffering high temperature, and consequently in recent years, contribute to the surge of research interest upon the oxidation resistance of carbonyl iron powders. This paper gives a brief description of the microwave absorbing mechanism of carbonyl iron powders and the mechanism of improving the oxidation resistance, summarizes the preparation methods that benefit pro-duct’s performance under high temperature oxidative environment, and finally ends with an outlook for this urgent and crucial research topic of microwave absorbing materials.
Key words:  carbonyl iron powder    oxidation resistance property    microwave absorbing property
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB334  
基金资助: 国家自然科学基金(51402239;51701148)
作者简介:  周影影:女,1988年生,博士,讲师,主要从事铁磁性吸波材料的高温抗氧化性研究 E-mail:zyzlchappy1989@163.com
引用本文:    
周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
ZHOU Yingying, XIE Hui, ZHOU Wancheng. Current Research Status of Oxidation Resistance of Carbonyl Iron Powders. Materials Reports, 2018, 32(5): 749-754.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.010  或          https://www.mater-rep.com/CN/Y2018/V32/I5/749
1 Guo J L, Wang X L, Miao P L, et al. One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption[J].Journal of Materials Chemistry, 2012,22:11933.
2 Liu X G, Geng D Y, Zhang D. Microwave-absorption properties of Fe Co microspheres self-assembled by Al2O3-coated FeCo nanocapsules[J].Applied Physics Letters,2008,92:243110.
3 Gao B, Qiao L, Wang J B, et al. Microwave absorption properties of the Ni nanowires composite[J].Journal of Physics D:Applied Phy-sics,2008,41:235005.
4 Han M G, Tang W, Chen W B, et al. Effect of shape of Fe particles on their electromagnetic properties within 1-18 GHz range[J].Journal of Applied Physics,2010,107:A958.
5 Li W C, Lv J J, Zhou X, et al. Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites[J].Journal of Magnetism and Magnetic Materials,2017,426:504.
6 Weng X D, Li B Z, Zhang Y, et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties[J].Journal of Alloys and Compounds,2017,695:508.
7 Qing Y C, Min D D, Zhou Y Y, et al. Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber[J].Carbon,2015,86:98.
8 Qing Y C, Zhou W C, Luo F, et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber[J].Carbon,2010,48:4074.
9 Ma P W, Woo C H, Dudarev S L. High-temperature dynamics of surface magnetism in iron thin films[J].Philosophical Magazine,2009,89:2921.
10 Wang H. Studying status and developing trend of trend of radar wave-absorbing materials[J].Aerospace Shanghai,1999(1):55(in Chinese).
王海.雷达吸波材料的研究现状和发展方向[J].上海航天,1999(1):55.
11 Shi J P, Hu G P, Wang J L, et al. Analysis and progress of radar stealth technology[J].Aerodynamic Missile Journal,2014(2):81(in Chinese).
师俊朋,胡国平,王金龙,等.雷达隐身技术分析及进展[J].飞航导弹,2014(2):81.
12 Deng H Y, Guan J G, Gao G H. Research progress in radar absor-bing material[J].New Chemical Materials,2003,31(3):2(in Chinese).
邓惠勇,官建国,高国华.雷达用隐身吸波材料研究进展[J].化工新型材料,2003,31(3):2.
13 Qing Y C. Preparation and properties of high temperature wave absorbing coatings[D].Xi’an:Northwestern Polytechnical University,2011(in Chinese).
卿玉长.高温吸波涂层的制备及其性能研究[D].西安:西北工业大学,2011.
14 刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2006.
15 Abshinova M A, Lopatin A V, Kazantseva N E, et al. Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composites[J].Composites Part A,2007,38:2471.
16 Zhou Y Y, Zhou W C, Luo F, et al. The microwave absorbing theory and application of carbonyl iron powder in microwave absorbing coatings[J].Materials Review A:Review Papers,2013,27(7):122(in Chinese).
周影影,周万城,罗发,等.羰基铁粉吸波涂层的吸波原理及应用[J].材料导报:综述篇,2013,27(7):122.
17 Wang X, Zhu D M, Xiang G, et al. Research progress on carbonyl iron absorber[J].Materials Review A:Review Papers,2014,28(12):17(in Chinese).
王轩,朱冬梅,向耿,等.羰基铁吸收剂的研究进展[J].材料导报:综述篇,2014,28(12):17.
18 Liu L D, Duan Y P, Liu S H, et al. Microwave absorption properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene[J].Journal of Magnetism and Magnetic Materials,2010,322:1736.
19 Tsutaoka T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials[J].Journal of Applied Physics,2003,93:2789.
20 Zhou Y Y, Zhou W C, Li R, et al. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating[J].Journal of Alloys and Compounds,2015,637:10.
21 Wu H J, Wang L D, Wang Y M, et al. Enhanced microwave absor-bing properties of carbonyl iron-doped Ag/ordered mesoporous carbon nanocomposites[J].Materials Science and Engineering:B,2012,177:476.
22 Cao X G, Ren H, Zhang H Y. Preparation and microwave shielding property of silver-coated carbonyl iron powder[J].Journal of Alloys and Compounds,2015,631:133.
23 Cao X G, Zhang H Y. Preparation and performance of silver-coated carbonyl iron powder[J].Journal of Materials Engineering,2007(8):69(in Chinese).
曹晓国,张海燕.镀银羰基铁粉的制备及其性能的研究[J].材料工程,2007(8):69.
24 Zhou Y Y, Zhou W C, Li R, et al. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite[J].Journal of Magnetism and Magnetic Mate-rials,2016,401:251.
25 Wang H Y, Zhu D M, Zhou W C, et al. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co[J].Journal of Magnetism and Magnetic Materials,2015,393:445.
26 Jiang W Q, Zhang F D, Chen Z Y, et al. Carbonyl iron modified with nano cobalt and its magnetorheological effect[J].Journal of Functional Materials,2006,37(7):1163(in Chinese).
江万权,张复殿,陈祖耀,等.羰基铁粉表面纳米钴修饰及其对磁流变液性能的影响[J].功能材料,2006,37(7):1163.
27 Li R, Zhou W C, Qing Y C. Preparation of Ni-B coating on carbonyl iron and its microwave absorption properties in the X band[J].Chinese Physics Letters,2014,31:097701.
28 Yi D Q, Yu P C, Hu B. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites[J].Materials and Design,2013,52:572.
29 Jia S, Luo F, Qing Y C, et al. Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings[J].Physica B:Condensed Matter,2010,405:3611.
30 Liu Y D, Lee J, Choi S B, et al. Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics[J].Smart Materials and Structures,2013,22:065022.
31 Li J, Feng W J, Wang J S, et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J].Journal of Magnetism and Magnetic Materials,2015,393:82.
32 Bruncková H, Kabátová M, Dudrová E. The effect of iron phosphate, alumina and silica coatings on the morphology of carbonyl iron particles[J].Surface and Interface Analysis,2010,42:13.
33 Yan L G, Wang J B, Han X H, et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell[J].Nanotechnology,2010,21:095708.
34 Wang H Y, Zhu D M, Zhou W C, et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J].Journal of Magnetism and Magnetic Materials,2015,375:111.
35 Guo X H, Deng Y H, Gu D, et al. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites[J].Journal of Materials Chemistry,2009,19:6706.
36 Wu N Y, Cheng Y K, Liu C P, et al. Preparation and electromagnetic properties of SiO2 coated carbonyl iron particles with flake-shape[J].Journal of Magnetic Materials and Devices,2016,47(1):22(in Chinese).
伍倪燕,程艳奎,刘存平,等.SiO2包覆片状羰基铁粉的制备及电磁性能[J].磁性材料及器件,2016,47(1):22.
37 Tong G X, Wang W, Guan J G, et al. Properties of Fe/SiO2 core-shell composite particles with different nanoshell thickness[J].Journal of Inorganic Materials,2006,21(6):1461(in Chinese).
童国秀,王维,官建国,等.SiO2纳米壳的厚度对羰基铁/SiO2核壳复合粒子的性能影响[J].无机材料学报,2006,21(6):1461.
38 Wei Q L, Zou D S, Meng Y T, et al. Preparation of a hybrid carbonyl iron powder by a twofold sol-gel technique[J].Rare Metal Mate-rials and Engineering,2012,41:186.
39 Wu W H, Yang K T. Study on Fe/SiO2 core-shell magnetic compo-site particles[J].Journal of Magnetic Materials and Devices,2006,37(2):31(in Chinese).
吴文华,杨坤涛.羰基铁/SiO2磁性核壳复合粒子研究[J].磁性材料及器件,2006,37(2):31.
40 Gao G H. Coating iron particles with SiO2 nanoshell[D].Wuhan:Wuhan University of Technology,2004(in Chinese).
高国华.用SiO2包覆铁复合粒子的研究[D].武汉:武汉理工大学,2004.
41 Zhu J H, Wei S Y, Lee I Y, et al. Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites[J].RSC Advances,2012,2:1136.
42 Liu Y D, Choi H J. Carbon nanotube-coated silicated soft magnetic carbonyl iron microspheres and their magnetorheology[J].Journal of Applied Physics,2012,111:07B502.
43 Qing Y C, Zhou W C, Jia S, et al. Microwave electromagnetic pro-perty of SiO2-coated carbonyl iron particles with higher oxidation resistance[J].Physica B:Condensed Matter,2011,406:777.
44 Li J. Preparation of silica coated carbonyl iron powder and its wave absorbing property[D].Lanzhou:Lanzhou University of Technology,2015(in Chinese).
李靖.二氧化硅包覆羰基铁粉的制备及其吸波性能[D].兰州:兰州理工大学,2015.
45 Wang G H, Kong J C, Li X J, et al. Investigation on surface modification and thermal stability of carbonyl iron particles[J].China Powder Science and Technology,2011,17(2):5(in Chinese).
王光华,孔金丞,李雄军,等.羰基铁粉表面改性及其热稳定性研究[J].中国粉体技术,2011,17(2):5.
46 Bae Y W, Lee W Y, Besmann T M, et al. Effects of processing parameters on alumina coatings deposited on nickel substrates by reacting aluminum chloride and hydrogen/carbon dioxide gas mixtures[J].Journal of the American Ceramic Society,1998,81:1945.
47 Lux B, Colombier C, Altena H, et al. Preparation of alumina coa-tings by chemical vapour deposition[J].Thin Solid Films,1986,138:49.
48 Jay F, Gauthier-Brunet V, Pailloux F, et al. Al-coated iron particles: Synthesis, characterization and improvement of oxidation resistance[J].Surface and Coatings Technology,2008,202:4302.
49 Tong G X, Guan J G, Wang W, et al. Preparation and properties of carbonyl iron/Al2O3 core-shell composite particle[J].Chinese Journal of Materials Research,2008,22(1):102(in Chinese).
童国秀,官建国,王维,等.羰基铁/Al2O3核壳复合粒子的制备和性能[J].材料研究学报,2008,22(1):102.
50 Guo F, Du H L, Qu S B, et al. Oxidation resitance and microwave absorption property of core shell urchin-like ZnO/carbonyl iron powder composite particles[J].Chinese Journal of Inorganic Chemistry,2015,31(4):755(in Chinese).
郭飞,杜红亮,屈绍波,等.海胆状氧化锌/羰基铁粉核壳结构复合粒子的抗氧化及吸波性能[J].无机化学学报,2015,31(4):755.
51 Wang W, Guan J G, Wang Q. Influence of ball milling time on the microstructure and properties of prepared Fe-ZnO core- shell nanocomposite particle[J].Journal of Inorganic Materials,2005,20(3):599(in Chinese).
王维,官建国,王琦.球磨时间对制备Fe-ZnO核壳纳米复合粒子的结构和性能的影响[J].无机材料学报,2005,20(3):599.
52 Liu J, Qiu T, Yang J. Synthesis of ferrite MgFe2O4-coated carbonyl iron composite powder in situ and oxidation resistance performance[J].Journal of Nanjing Tech University (Natural Science Edition),2008,30(2):28(in Chinese).
刘姣,丘泰,杨建.MgFe2O4铁氧体原位包覆羰基铁超细复合粉体的制备及其抗氧化性能[J].南京工业大学学报(自然科学版),2008,30(2): 28.
53 Gong J H, Qiu T, Shen C Y, et al. Synthesization of carbonyl iron powder coated with nano-CoFe2O4 composite particles and microwave absorptive performance research[J].Journal of Functional Materials,2006,37(s3):1108(in Chinese).
公建辉,丘泰,沈春英,等.纳米CoFe2O4包覆羰基铁复合微粉的制备和吸波性能研究[J].功能材料,2006,37(专辑3):1108.
54 Sedlaík M, Pavlínek V, Sáha P, et al. Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles[J].Smart Materials and Structures,2010,19:115008.
55 Abshinova M A, Kazantseva N E, Sáha P, et al. The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties[J].Polymer Degradation and Stability,2008,93:1826.
56 Mrlík M, Ilíková M, Pavlínek V, et al. Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology[J].Journal of Colloid and Interface Science,2013,396:146.
57 Gong R Z, Guan J G, Fang L, et al. Preparation and characterization of carbonyl-iron/cobalt-phthalocyanine composites[J].Acta Materiae Compositae Sinica,2000,17(3):24(in Chinese).
龚荣洲,官建国,方亮,等.羰基铁酞菁钴复合粒子的制备及表征[J].复合材料学报,2000,17(3):24.
58 Roosendaal S J, Bakker J P R, Vredenberg A M, et al. Passivation of iron by oxidation in H2O and O2/H2O mixtures[J].Surface Science,2001,494:197.
59 Yin C L, Fan J M, Bai L Y, et al. Microwave absorption and antio-xidation properties of flaky carbonyl iron passivated with carbon dioxide[J].Journal of Magnetism and Magnetic Materials,2013,340:65.
[1] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[2] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[3] 居本祥, 付本元, 吕冰. 基于旋转磁场作用的磁流变脂磁致电阻特性研究[J]. 材料导报, 2024, 38(14): 22120138-5.
[4] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[5] 方亚超, 潘明熙, 黄惠, 何亚鹏, 张盼盼, 杨聪庆, 郭忠诚, 陈步明. 电子级超细树枝状铜粉的抗氧化性研究[J]. 材料导报, 2023, 37(7): 21090292-7.
[6] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[7] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[8] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[9] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[10] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[11] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[12] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[13] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[14] 丁亚文, 肖国庆, 丁冬海, 臧云飞, 陈建军. 晶体硅切割废料对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 材料导报, 2022, 36(6): 21010084-5.
[15] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed