Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 70-75    https://doi.org/10.11896/j.issn.1005-023X.2017.08.015
  材料研究 |
具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*
蒋波1, 戴光咏2, 闫永明1, 刘广磊2, 王芝林2, 王国存2, 刘雅政1
1 北京科技大学材料科学与工程学院, 北京 100083;
2 西宁特殊钢股份有限公司, 西宁 810005
Cooling Behavior of Heat Treated Carburizing Steel 23CrNi3Mo with Proper Hardness Gradient and Microstructure Distribution
JIANG Bo1, DAI Guangyong2, YAN Yongming1, LIU Guanglei2, WANG Zhilin2, WANG Guocun2, LIU Yazheng1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Xining Special Steel Co. Ltd, Xining 810005
下载:  全 文 ( PDF ) ( 2041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500热模拟机、光学显微镜(OM)、扫描电镜(SEM)以及透射电镜(TEM)对渗碳钢23CrNi3Mo的连续冷却相变规律以及等温转变规律进行了研究,并基于此,设计了一种新的热处理冷却工艺。研究结果表明,渗碳后试样以0.05 ℃/s和0.1 ℃/s的冷速连续冷却时,表面渗碳层为高碳马氏体组织,过渡区为高碳马氏体+下贝氏体的混合组织,基体为下贝氏体组织;渗碳试样外表面在高温段以较低的冷速(0.05~3 ℃/s)连续冷却时,碳化物沿晶界析出形成网状碳化物;无渗碳的实验钢的贝氏体等温转变温度范围为375~450 ℃。新的热处理冷却工艺为:试样在880 ℃保温完成后,采用快速冷却工艺,以冷速大于等于5 ℃/s进入贝氏体转变温度区,直接入450 ℃的盐浴炉,入炉后均温5~10 min,在低温转变区即贝氏体转变温度区间,采用慢速冷却工艺,冷速小于等于0.1 ℃/s。获得的试样渗碳层深度为1.4 mm,国外的阿特拉斯钎头渗碳层深度为1.2 mm,两者基本相同,但前者硬度分布更加平缓;两者表面显微组织均为高碳马氏体组织,过渡区均为马氏体加下贝氏体组织,基体均为贝氏体组织。通过设计新的热处理冷却工艺,获得了与国外钎头相同水平的试样。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋波
戴光咏
闫永明
刘广磊
王芝林
王国存
刘雅政
关键词:  渗碳钢  钎头  相变规律  冷速  下贝氏体    
Abstract: The continuous cooling transformation and isothermal transformation were investigated by thermal simulation machine Gleeble-1500, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Based on the investigation, a new heat treatment cooling process was designed. Results show that the microstructures at the surface, the transition zone and the matrix of the steel after carburizing at the cooling rates of 0.05 ℃/s and 0.1 ℃/s are high carbon martensite, a mixed microstructure of lower bainite and high carbon martensite and lower bainite, respectively. The network carbide was formed along the boundary in the microstructure at the surface when the carburizing steel was cooled from the quenching temperature with a lower cooling rate from 0.05 ℃/s to 3 ℃/s. The temperature of bainite transformation of steel without carburizing ranges from 375 ℃ to 450 ℃. The new heat treatment cooling process was set as follow: the carburizing steel was cooled from 880 ℃ with a fast cooling rate of 5 ℃/s to the bainite transformation zone, and put into the salt bath furnace soaking for 5-10 minutes at 450 ℃; after that, the steel was slowly cooled at the cooling rate lower than 0.1 ℃/s. Microstructural examination indicates that the depth of carburizing case of the specimen after the new process is 1.4 mm, which is nearly the same with the drill bit from Atlas abroad (1.2 mm). The hardness distribution of the specimen after the new process is smoother. The obtained microstructures at the surface, the transition zone and the matrix of the specimen after the new process and the drill bit from Atlas abroad are both high carbon martensite, a mixed microstructure of lower bainite and high carbon martensite and lower bainite, respectively. The carburizing steel which has a same level as the drill bit abroad was obtained by designing the new heat treatment cooling process.
Key words:  carburizing steel    drill bit    phase transformation    cooling rate    lower bainite
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG335.5  
基金资助: 中央高校基本科研业务费(FRF-TP-16-032A1);中国博士后科学基金(2016M600915
通讯作者:  刘雅政:女,1952年生,教授,研究方向为塑性加工理论和新材料制备与加工 E-mail:lyzh@ustb.edu.cn   
作者简介:  蒋波:男,1990年生,博士,研究方向为先进金属材料的品种研发与质量控制 E-mail:jiangbo@ustb.edu.cn
引用本文:    
蒋波, 戴光咏, 闫永明, 刘广磊, 王芝林, 王国存, 刘雅政. 具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*[J]. 《材料导报》期刊社, 2017, 31(8): 70-75.
JIANG Bo, DAI Guangyong, YAN Yongming, LIU Guanglei, WANG Zhilin, WANG Guocun, LIU Yazheng. Cooling Behavior of Heat Treated Carburizing Steel 23CrNi3Mo with Proper Hardness Gradient and Microstructure Distribution. Materials Reports, 2017, 31(8): 70-75.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.015  或          http://www.mater-rep.com/CN/Y2017/V31/I8/70
1 Hu Zhiguo. The research and development of bit steel and drilling bit products [J]. Rock Drilling Machines Pneumatic Tools,2011(4):6(in Chinese).
胡支国.钎钢钎具产品的研制与开发[J].凿岩机械气动工具,2011(4):6.
2 Zhou Aimin. The national development of the process and equipment of drilling and blasting in hard rock mine [J]. Rock Drilling Machines Pneumatic Tools,2009(1):50(in Chinese).
周爱民.我国硬岩矿山凿岩爆破工艺与装备进展[J].凿岩机械气动工具,2009(1):50.
3 Farfan S, Rubio-Gonzalez C, Mesmacque G. High cycle fatigue, low cycle fatigue and failure modes of a carburized steel [J]. Int J Fatigue,2004,26(2):673.
4 Fuchs H O, Stephens R I. Metal fatigue in engineering [M]. New York: John Wiley,1980.
5 Ebert L J. The role of residual stresses in the mechanical perfor-mance of case carburized steels [J]. Metall Trans A,1978,9(11):1537.
6 Luther R G, Williams T R G. Influence of surface reinforcement on the fatigue strength of low-C steel [J]. Metall Metal Forming,1974,41(3):72.
7 Genel K, Demirkol M. Effect of case depth on fatigue performance of AISI 8620 carburized steel[J]. Int J Fatigue,1999,21(2):207.
8 洪达灵,顾太和,徐曙光.钎钢与钎具[J].北京:冶金工业出版社,2000.
9 Wang Jingqi, Lu Rong, Cui Guoli. Comprehensive evaluation on service life of drill steels [J]. Mech Ind School Shenyang City,1996,18(S1):19(in Chinese).
王晶琪,吕荣,崔国利.钎具钢使用寿命的综合评判 [J].沈阳工业大学学报,1996,18(S1):19.
10 Deng Qun, Rao Jianhua, Ye Lingyun. Experiment study of heat treatment for 23CrNi3Mo [J]. J Hubei University of Technology,2007,22(4):9(in Chinese).
邓群,饶建华,叶凌云.23CrNi3Mo 热处理工艺的试验研究 [J].湖北工业大学学报,2007,22(4):9.
11 林慧国,傅代直.钢的奥氏体转变曲线——原理、测试与应用 [M].北京:机械工业出版社,1988.
12 Quidort D, Bréchet Y. The role of carbon on the kinetics of bainite transformation in steels [J]. Scripta Mater,2002,47(3):151.
13 Bhadeshia H, Edmonds D V. The mechanism of bainite formation in steels [J]. Acta Metall,1980,28(9):1265.
14 Akita M, Tokaji K. Effect of carburizing on notch fatigue behaviour in AISI 316 austenitic stainless steel[J]. Surf Coat Technol,2006,200(20):6073.
15 Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metall Mater Trans A,1985,16(1):73.
16 Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metall Mater Trans A,1983,14(2):485.
17 Tomita Y, Okabayashi K. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel[J]. Metall Mater Trans A,1983,14(11):2387.
18 Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of 300M steel[J]. Mater Sci Technol,1995,11(3):245.
19 Tomita Y. Mechanical properties of modified heat treated silicon modified 4330 steel[J]. Mater Sci Technol,1995,11(3):259.
20 Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Mater Sci Eng A,2013,561:126.
21 Chakrabarti D, Strangwood M, Davis C. Effect of bimodal grain size distribution on scatter in toughness[J]. Metall Mater Trans A,2009,40(4):780.
22 Fang Hongsheng, Liu Dongyu. The latest advancement of carbide free bainite/martensite duplex phase steel [J]. Heat Treat Met,2001,26(10):4(in Chinese).
方鸿生,刘东雨.无碳化物贝氏体/马氏体复相钢的新进展[J].金属热处理,2001,26(10):4.
23 Tian Baohong, Zheng Shian. The strengthening and toughening mechanisms and application of the combined microstructure of martensite and lower bainite [J]. J Luoyang Institute of Technology,1993,14(4):29(in Chinese).
田保红,郑世安.马氏体-下贝氏体复相组织强韧化机理研究及实际应用[J].洛阳工学院学报,1993,14(4):29.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed