Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 56-59    https://doi.org/10.11896/j.issn.1005-023X.2017.04.013
  材料研究 |
Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*
吴长军1, 陆龙飞1, 杨威1, 苏旭平1,2, 王建华1
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室, 常州 213164;
2 常州大学光伏科学与工程协同创新中心, 常州 213164
Effect of Fe and Ce Content on Mechanical Properties and Corrosion
Resistance of Galfan Alloy
WU Changjun1, LU Longfei1, YANG Wei1, SU Xuping1,2, WANG Jianhua1
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164;
2 Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 1476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将真空熔炼的Zn-Fe-Ce中间合金加入到Zn-Al熔池中,制备Zn-5Al-0.1Ce-xFe和Zn-5Al-yCe-0.1Fe合金,分析了Fe和Ce含量对合金显微组织及力学性能的影响,并使用电化学工作站测试了合金的电化学性能。结果表明,在Zn-5Al-0.1Ce合金中Fe含量大于0.02%后会形成颗粒状的FeAl3Znx相。随着Fe含量的增加,FeAl3Znx相和先共晶的η-Zn相增加,Zn-Al共晶组织由层片状向点状转变。添加0.1%以下的Fe可提高Galfan合金的抗拉强度。但随着Fe含量的增加,合金的抗拉强度略有降低,Zn-5Al-0.1Ce-0.02Fe合金的综合力学性能最好。添加0.04%以下的Fe会提升合金耐蚀性。此外,随着Ce含量的增加,Zn-5Al-yCe-0.1Fe合金的抗拉强度有所降低,耐蚀性变化不明显。因此,在生产中需要根据镀层性能要求,严格控制合金液中的Fe和Ce含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴长军
陆龙飞
杨威
苏旭平
王建华
关键词:  Zn-5Al-RE合金  显微组    力学性能  耐蚀性    
Abstract: The Zn-5Al-0.1Ce-xFe and Zn-5Al-yCe-0.1Fe alloys were prepared by adding Zn-Fe-Ce master alloys, which were melted in evacuated condition, into the Zn-Al bath. The influence of Fe and Ce contents on the microstructure and mechanical pro-perties of these alloys were investigated. And their electrochemical properties were measured by the electrochemical workstation. Experimental results indicate that FeAl3Znx particles form in the Zn-5Al-0.1Ce alloy when Fe content is above 0.02%. With the increase of the Fe content, the amounts of the FeAl3Znx phase and the proeutectic η-Zn phase increase, which make the microstructure of the Zn-Al eutectic change from lamellar to dot. Less than 0.1% Fe will improve the tensile strength of the Galfan alloy. With the increase of Fe content, the tensile strength of the alloy decreases slightly. The best comprehensive mechanical properties is obtained when 0.02%Fe is added in the alloy. And the corrosion resistance of the alloys increase when less than 0.04%Fe is added in to the Zn-5Al-0.1Ce alloy. Moreover, with the increase of Ce content, the mechanical properties of the Zn-5Al-yCe-0.1Fe alloys reduce, while its corrosion resistance changed slightly. Therefore, it is believed that the content of Fe and Ce in the liquid bath should be strictly controlled according to the requirement of the performance during in production process.
Key words:  Zn-5Al-RE alloys    microstructure    mechanical properties    corrosion resistance
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG174.4  
基金资助: *国家自然科学基金(51201023;51271041)
通讯作者:  王建华:通讯作者,男,1963年生,博士,教授,研究方向为合金组织与性能、材料表面处理 E-mail:wangjh@cczu.edu.cn   
作者简介:  吴长军:男,1985年生,博士,副教授,研究方向为合金热力学及材料设计、材料表面处理 E-mail:wucj@cczu.edu.cn
引用本文:    
吴长军, 陆龙飞, 杨威, 苏旭平, 王建华. Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 56-59.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.013  或          https://www.mater-rep.com/CN/Y2017/V31/I4/56
1 He Z R, He Y, Liu J T, et al. Effects of Al and RE on microstructure and corrosion resistance of Zn-Al alloy coatings [J]. Chinese J Nonferrous Met,2014(8):2020(in Chinese).
贺志荣, 何应, 刘继拓,等. Al和RE对Zn-Al合金镀层组织和耐蚀性的影响 [J]. 中国有色金属学报,2014(8):2020.
2 Souto R M, Scantlebury D J. Cathodic delamination of coil coatings produced with different Zn-based intermediate metallic layers [J]. Prog Organ Coat,2005,53(1):63.
3 Li Y D. Zn-5Al-RE alloy and its application [J]. Corros Protect,1996,17(3):132(in Chinese).
李定云. Zn-5Al-RE 合金及其应用 [J]. 腐蚀与防护,1996,17(3):132.
4 Ghuman A R P, Goldstein J I. Reaction mechanisms for the coatings formed during the hot dipping of iron in 0 to 10 pct Al-Zn baths at 450 to 700 ℃ [J]. Metall Trans,1971,2(10):2903.
5 Chen Z W, Gregory J T, Sharp R M. Intermetallic phases formed during hot dipping of low carbon steel in a Zn-5 pct Al melt at 450 ℃ [J]. Metall Trans A,1992,23(9):2393.
6 Z·elechower M, Kli J, Augustyn E, et al. The microstructure of annealed Galfan coating on steel substrate [J]. Archives Metall Mater,2012,57(2):517.
7 Gao Q Z, Feng B, Du A, et al. Research progress of formation mechanism of hot-dip Zn-5%Al-RE galfan alloy layer [J]. Hot Work Technol,2008,37(6):89(in Chinese).
高秋志, 冯彬, 杜安, 等. 热浸镀 Zn-5% Al-RE 合金层形成机理的研究进展 [J]. 热加工工艺,2008,37(6):89.
8 Du A, Cao X M, Ma R N,et al. Research on the cracking of hot-dip galfan coating of steel wire [J]. Mater Rev:Res,2010,24(4):63(in Chinese).
杜安, 曹晓明, 马瑞娜,等. 钢丝热浸镀 Galfan 合金镀层开裂的研究 [J]. 材料导报:研究篇,2010,24(4):63.
9 Rosalbino F, Angelini E, Macciò D,et al. Influence of rare earths addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium sulphate solution [J]. Electrochim Acta,2007,52(24):7107.
10 Yang T Z, Wu C J, Wang J H, et al. Solidification microstructure and corrosion resistance of galfan alloy with different cooling conditions and Ce content [J]. Chin J Rare Metals,2015(7):583(in Chinese).
杨廷志, 吴长军, 王建华, 等. 冷却条件和 Ce 含量对 Galfan 合金凝固组织及其耐蚀性的影响 [J]. 稀有金属,2015(7):583.
11 Rosalbino F, Angelini E, Macciò D, et al. Application of EIS to assess the effect of rare earths small addition on the corrosion beha-viour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution [J]. Electrochim Acta,2009,54(4):1204.
12 Wang K L, Zhang Q B, Sun M L, et al. Microstructure and corrosion resistance of laser clad coatings with rare earth elements [J]. Corros Sci,2001,43(2):255.
13 Tang Naiyong, Su Xuping. On the ternary phase in the zinc-rich corner of the Zn-Fe-Al system at temperatures below 450 ℃ [J]. Me-tall Mater Trans A,2002,33:1559.
14 Dou Y H, Liu Y, Xu F, et al. Effect of Fe on microstructure and mechanical properties of ZA27 alloy [J]. Mater Sci Eng Powder Metall,2012,17(3):309(in Chinese).
窦玉海, 刘咏, 徐菲, 等. Fe 元素对 ZA27 合金显微组织和力学性能的影响 [J]. 粉末冶金材料科学与工程,2012,17(3):309.
15 Guo T X, Dong X Q, Deng S H, et al. Influence of rare earth on hot-dipped 55% Al-Zn alloy coating [J]. Adv Mater Res,2013,774:1132.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[8] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[9] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[13] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[14] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[15] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed