Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 56-59    https://doi.org/10.11896/j.issn.1005-023X.2017.04.013
  材料研究 |
Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*
吴长军1, 陆龙飞1, 杨威1, 苏旭平1,2, 王建华1
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室, 常州 213164;
2 常州大学光伏科学与工程协同创新中心, 常州 213164
Effect of Fe and Ce Content on Mechanical Properties and Corrosion
Resistance of Galfan Alloy
WU Changjun1, LU Longfei1, YANG Wei1, SU Xuping1,2, WANG Jianhua1
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164;
2 Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 1476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将真空熔炼的Zn-Fe-Ce中间合金加入到Zn-Al熔池中,制备Zn-5Al-0.1Ce-xFe和Zn-5Al-yCe-0.1Fe合金,分析了Fe和Ce含量对合金显微组织及力学性能的影响,并使用电化学工作站测试了合金的电化学性能。结果表明,在Zn-5Al-0.1Ce合金中Fe含量大于0.02%后会形成颗粒状的FeAl3Znx相。随着Fe含量的增加,FeAl3Znx相和先共晶的η-Zn相增加,Zn-Al共晶组织由层片状向点状转变。添加0.1%以下的Fe可提高Galfan合金的抗拉强度。但随着Fe含量的增加,合金的抗拉强度略有降低,Zn-5Al-0.1Ce-0.02Fe合金的综合力学性能最好。添加0.04%以下的Fe会提升合金耐蚀性。此外,随着Ce含量的增加,Zn-5Al-yCe-0.1Fe合金的抗拉强度有所降低,耐蚀性变化不明显。因此,在生产中需要根据镀层性能要求,严格控制合金液中的Fe和Ce含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴长军
陆龙飞
杨威
苏旭平
王建华
关键词:  Zn-5Al-RE合金  显微组    力学性能  耐蚀性    
Abstract: The Zn-5Al-0.1Ce-xFe and Zn-5Al-yCe-0.1Fe alloys were prepared by adding Zn-Fe-Ce master alloys, which were melted in evacuated condition, into the Zn-Al bath. The influence of Fe and Ce contents on the microstructure and mechanical pro-perties of these alloys were investigated. And their electrochemical properties were measured by the electrochemical workstation. Experimental results indicate that FeAl3Znx particles form in the Zn-5Al-0.1Ce alloy when Fe content is above 0.02%. With the increase of the Fe content, the amounts of the FeAl3Znx phase and the proeutectic η-Zn phase increase, which make the microstructure of the Zn-Al eutectic change from lamellar to dot. Less than 0.1% Fe will improve the tensile strength of the Galfan alloy. With the increase of Fe content, the tensile strength of the alloy decreases slightly. The best comprehensive mechanical properties is obtained when 0.02%Fe is added in the alloy. And the corrosion resistance of the alloys increase when less than 0.04%Fe is added in to the Zn-5Al-0.1Ce alloy. Moreover, with the increase of Ce content, the mechanical properties of the Zn-5Al-yCe-0.1Fe alloys reduce, while its corrosion resistance changed slightly. Therefore, it is believed that the content of Fe and Ce in the liquid bath should be strictly controlled according to the requirement of the performance during in production process.
Key words:  Zn-5Al-RE alloys    microstructure    mechanical properties    corrosion resistance
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG174.4  
基金资助: *国家自然科学基金(51201023;51271041)
通讯作者:  王建华:通讯作者,男,1963年生,博士,教授,研究方向为合金组织与性能、材料表面处理 E-mail:wangjh@cczu.edu.cn   
作者简介:  吴长军:男,1985年生,博士,副教授,研究方向为合金热力学及材料设计、材料表面处理 E-mail:wucj@cczu.edu.cn
引用本文:    
吴长军, 陆龙飞, 杨威, 苏旭平, 王建华. Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 56-59.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.013  或          http://www.mater-rep.com/CN/Y2017/V31/I4/56
1 He Z R, He Y, Liu J T, et al. Effects of Al and RE on microstructure and corrosion resistance of Zn-Al alloy coatings [J]. Chinese J Nonferrous Met,2014(8):2020(in Chinese).
贺志荣, 何应, 刘继拓,等. Al和RE对Zn-Al合金镀层组织和耐蚀性的影响 [J]. 中国有色金属学报,2014(8):2020.
2 Souto R M, Scantlebury D J. Cathodic delamination of coil coatings produced with different Zn-based intermediate metallic layers [J]. Prog Organ Coat,2005,53(1):63.
3 Li Y D. Zn-5Al-RE alloy and its application [J]. Corros Protect,1996,17(3):132(in Chinese).
李定云. Zn-5Al-RE 合金及其应用 [J]. 腐蚀与防护,1996,17(3):132.
4 Ghuman A R P, Goldstein J I. Reaction mechanisms for the coatings formed during the hot dipping of iron in 0 to 10 pct Al-Zn baths at 450 to 700 ℃ [J]. Metall Trans,1971,2(10):2903.
5 Chen Z W, Gregory J T, Sharp R M. Intermetallic phases formed during hot dipping of low carbon steel in a Zn-5 pct Al melt at 450 ℃ [J]. Metall Trans A,1992,23(9):2393.
6 Z·elechower M, Kli J, Augustyn E, et al. The microstructure of annealed Galfan coating on steel substrate [J]. Archives Metall Mater,2012,57(2):517.
7 Gao Q Z, Feng B, Du A, et al. Research progress of formation mechanism of hot-dip Zn-5%Al-RE galfan alloy layer [J]. Hot Work Technol,2008,37(6):89(in Chinese).
高秋志, 冯彬, 杜安, 等. 热浸镀 Zn-5% Al-RE 合金层形成机理的研究进展 [J]. 热加工工艺,2008,37(6):89.
8 Du A, Cao X M, Ma R N,et al. Research on the cracking of hot-dip galfan coating of steel wire [J]. Mater Rev:Res,2010,24(4):63(in Chinese).
杜安, 曹晓明, 马瑞娜,等. 钢丝热浸镀 Galfan 合金镀层开裂的研究 [J]. 材料导报:研究篇,2010,24(4):63.
9 Rosalbino F, Angelini E, Macciò D,et al. Influence of rare earths addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium sulphate solution [J]. Electrochim Acta,2007,52(24):7107.
10 Yang T Z, Wu C J, Wang J H, et al. Solidification microstructure and corrosion resistance of galfan alloy with different cooling conditions and Ce content [J]. Chin J Rare Metals,2015(7):583(in Chinese).
杨廷志, 吴长军, 王建华, 等. 冷却条件和 Ce 含量对 Galfan 合金凝固组织及其耐蚀性的影响 [J]. 稀有金属,2015(7):583.
11 Rosalbino F, Angelini E, Macciò D, et al. Application of EIS to assess the effect of rare earths small addition on the corrosion beha-viour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution [J]. Electrochim Acta,2009,54(4):1204.
12 Wang K L, Zhang Q B, Sun M L, et al. Microstructure and corrosion resistance of laser clad coatings with rare earth elements [J]. Corros Sci,2001,43(2):255.
13 Tang Naiyong, Su Xuping. On the ternary phase in the zinc-rich corner of the Zn-Fe-Al system at temperatures below 450 ℃ [J]. Me-tall Mater Trans A,2002,33:1559.
14 Dou Y H, Liu Y, Xu F, et al. Effect of Fe on microstructure and mechanical properties of ZA27 alloy [J]. Mater Sci Eng Powder Metall,2012,17(3):309(in Chinese).
窦玉海, 刘咏, 徐菲, 等. Fe 元素对 ZA27 合金显微组织和力学性能的影响 [J]. 粉末冶金材料科学与工程,2012,17(3):309.
15 Guo T X, Dong X Q, Deng S H, et al. Influence of rare earth on hot-dipped 55% Al-Zn alloy coating [J]. Adv Mater Res,2013,774:1132.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 李宏英, 王鸿博, 傅佳佳, 王文聪. 薄荷油微胶囊整理对涤纶织物服用性能的影响[J]. 材料导报, 2019, 33(z1): 510-514.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[14] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[15] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed