Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 60-64    https://doi.org/10.11896/j.issn.1005-023X.2017.04.014
  材料研究 |
轧制ZK61镁合金板材晶粒长大行为*
赵而团1, 张立新2,3, 于晴2, 陈文振2
1 山东理工大学机械工程学院, 淄博 255049;
2 哈尔滨工业大学(威海)材料科学与工程学院, 威海 264209;
3 海军航空工程学院基础实验部, 烟台 264001
Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet
ZHAO Ertuan1, ZHANG Lixin2,3, YU Qing2, CHEN Wenzhen2
1 School of Mechanical Engineering, Shandong University of Technology, Zibo 255049;
2 School of Material Science and Engineering, Harbin Institute of Technology, Weihai 264209;
3 Department of Fundamental Experiment, Naval Aeronautical Engineering Institute, Yantai 264001
下载:  全 文 ( PDF ) ( 1590KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对热轧的ZK61镁合金板材试样分别进行不同温度和不同保温时间的退火实验,利用金相显微镜(OM)观察显微组织,对晶粒尺寸进行分析和处理,并建立数学模型,系统研究了轧制ZK61镁合金的晶粒长大行为。研究结果表明,晶粒尺寸随着退火温度的升高与退火时间的延长而粗化,退火温度对晶粒长大的影响比退火时间的影响明显。对于ZK61镁合金在250~450 ℃温度区间的晶粒长大过程,其晶粒尺寸与加热时间的关系可用Beck方程Dn-D0n=kt描述,其中k=k0exp[-Qg/(RT)]。计算可得晶粒长大指数n为3.5,长大激活能Qg为45 kJ/mol。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵而团
张立新
于晴
陈文振
关键词:  ZK61镁合金  退火  晶粒长大  Beck方程    
Abstract: The annealing experiment of the hot-rolled ZK61 magnesium alloy plates was carried out under different annealing temperature and holding time. The microstructure was observed by optical microscope (OM), and the mathematical model for the relationship among the grain size, annealing temperature and holding time was established to investigate the grain growth behavior of hot-rolled ZK61 magnesium alloy. The results indicate that the increasing annealing temperature and the extending holding time can lead to the coarsened grain. In addition, annealing temperature apparently has a greater effect on the grain growth than holding time. The relationship between the grain size and holding time of ZK61 magnesium alloy in the temperature range of 250-450 ℃ can be well interpreted by the kinetic equation, Dn-D0n=kt, where k=k0exp[-Qg/(RT)]. And the calculated grain growth exponent (n) and the activation energy (Qg) are about 3.5 and 45 kJ/mol, respectively.
Key words:  ZK61 magnesium alloy    annealing    grain growth    Beck equation
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG166.4  
基金资助: *国家自然科学基金(51401064);山东省科技发展计划(2014GGX10211);山东省科技重大专项(2015ZDJQ02002)
通讯作者:  张立新:通讯作者,男,1972年生,硕士,工程师,研究方向为材料成型与控制 E-mail:zhanglixin2004@126.com 陈文振:通讯作者,男,1986年生,博士,讲师,研究方向为材料成型与控制 E-mail:nclwens@hit.edu.cn   
作者简介:  赵而团:男,1976年生,博士,讲师,研究方向为轻质合金及其精密热成形 E-mail:etzhao@sdut.edu.cn
引用本文:    
赵而团, 张立新, 于晴, 陈文振. 轧制ZK61镁合金板材晶粒长大行为*[J]. 《材料导报》期刊社, 2017, 31(4): 60-64.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.014  或          https://www.mater-rep.com/CN/Y2017/V31/I4/60
1 Liu Yu,Liu Jingan,Liu Zhiguo. Development feature and trend of magnesium processing industry and technology[J]. Nonferrous Met,2013,42(1):1(in Chinese).
刘煜,刘静安,刘志国. 镁合金加工工业及技术的发展特点与趋势[J].有色金属加工,2013,42(1):1.
2 Wang Saixiang, Zhang Datong, Zhang Wen, et al. Superplasticity of hot rolled MB8 magnesium alloy[J]. Trans Mater Heat Treat,2012,33(9):17(in Chinese).
王赛香,张大童,张文,等.热轧MB8镁合金的超塑性[J].材料热处理学报,2012,33(9):17.
3 Guo Fei, Zhang Dingfei, Yang Xusheng, et al. Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling[J]. Trans Nonferrous Met Soc China,2015,1:14.
4 Ji Wenfeng, Yan Hongge, Chen Jihua,et al. Effects of rolling temperature on microstructure and mechanical properties of large strain rolled AZ61 magnesium alloys sheets[J]. Mater Mechan Eng,2013(6):17(in Chinese).
嵇文凤,严红革,陈吉华,等. 轧制温度对大应变轧制AZ61镁合金板材组织与力学性能的影响[J]. 机械工程材料,2013(6):17.
5 Xiao Xinping, Wang Shuying, Cui Yongqiang. Study of ultra fine grain AZ91 sheet prepared by accumulative roll-bonding[J]. Hot Work Technol,2013,42(7):123(in Chinese).
肖心萍,王淑英,崔永强. 累积叠轧法制备纳米晶AZ91板材的研究[J].热加工工艺,2013,42(7):123.
6 Jiang Haitao, Duan Xiaoge, Cai Zhengxu, et al.Superplastic pro-cess and deformation mechanism of asymmetrically rolled AZ31 magnesium alloy[J]. J Mater Eng,2015(8):7(in Chinese).
江海涛, 段晓鸽, 蔡正旭, 等. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程,2015(8):7.
7 Gang Jianwei, Shi Binqing, Chen Rongshi, et al. Microstructure evolution and static recrystallization behavior of hot-rolled Mg-1Zn and Mg-1Y alloys during isothermal annealing[J]. Acta Metall Sin,2012,48(5):526(in Chinese).
刚建伟,施斌卿,陈荣石,等. 热轧Mg-1Zn和Mg-1Y退火组织演变及静态再结晶行为[J].金属学报,2012,48(5):526.
8 Yamamoto A, Kakishiro M, Ikeda M, et al. Grain refinement on AZ31 magnesium alloy by highly strained and annealed method[J]. Mater Sci Forum,2004,449-452:669.
9 Voort G V.Grain size measurement[M]//Mcall J L,Steele Jr J H.Practical applications of quantitative metallography.Philadelphia,USA:American Society for Testing and Materials,1984:85.
10 Atkimon H V. Theories of normal grain growth in pure single phase systems[J]. Acta Metall,1988,36(3):469.
11 Burke J E, Turnbull D. Recrystallization and grain growth[J]. Prog Met Phys,1952,3(11-15):220.
12 Konkova T, Mironov S, Korznikov A, et al. Grain growth during annealing of cryogenically-rolled Cu30Zn brass[J]. J Alloys Compd,2016,666:170.
13 Tripathi A, Samajdar I, Nie J F, et al. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy[J]. Mater Cha-racterization,2016,114:157.
14 Frost H J, Ashby M F. Deformation-mechanism maps, the plasticity and creep of metals and ceramics[M]. New York: Pergamon Press,1982:43.
15 Gao P, Lu L, Lai M O. Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying[J]. Mater Res Bull,2001,36:981.
16 Maung A T, Li L, Lai M O. Kinetics of grain growth in nanocrystalline magnesium-based metal-metal composite synthesized by mechanical alloying[J]. Compos Sci Technol,2006,66:531.
17 Higgins G T. Grain-boundary migration and grain growth[J]. Mater Sci,1974,8(5):143.
18 Huang Y D, Froyen L. Recovery, recrystallization and grain growth in Fe3Al-based alloys[J]. Intermetallics,2002,10(5):473.
19 Moreau G, Cornet J A, Calais D. Acceleration de la diffusion chimique sous irradiation dans le systeme aluminium-magnesium[J]. J Nuclear Mater,1971,38(2):197.
[1] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[2] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[3] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[4] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[5] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[6] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[7] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[8] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[9] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[10] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[11] 朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
[12] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[13] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[14] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[15] 邓丽莎, 何陈强, 杨宏, 甘勇, 陈冷. 偏析法制备高纯电子铝箔的再结晶织构演变[J]. 材料导报, 2022, 36(21): 21040243-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed