Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 23020020-5    https://doi.org/10.11896/cldb.23020020
  无机非金属及其复合材料 |
一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法
余海燕1, 许方贤1, 张帅1,2,*, 袁宁一1,2, 丁建宁2,3
1 常州大学材料科学与工程学院,江苏 常州 213161
2 江苏省光伏科学与工程协同创新中心,江苏 常州 213161
3 扬州大学机械工程学院,江苏 扬州 225000
A Method for Improving the Efficiency of Tin-based Perovskite Solar Cells by Low Temperature Annealing Treatment
YU Haiyan1, XU Fangxian1, ZHANG Shuai1,2,*, YUAN Ningyi1,2, DING Jianning2,3
1 School of Materials Science and Engineering, Changzhou University,Changzhou 213161, Jiangsu, China
2 Jiangsu Photovoltaic Science and Engineering Collaborative Innovation Center, Changzhou 213161,Jiangsu, China
3 School of Mechanical Engineering, Yangzhou University,Yangzhou 225000,Jiangsu, China
下载:  全 文 ( PDF ) ( 6017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿光伏材料是目前最具发展前景的一类光伏材料,其铅基光伏器件的小面积认证效率已突破25%。然而,铅元素严重的毒性问题成为钙钛矿光伏实用化的重要阻碍之一。锡基钙钛矿材料因其低毒性和理想的光电性能被认为是最有可能替代铅基钙钛矿的候选材料。然而,锡基钙钛矿过快的晶体生长速率往往造成制备的薄膜质量欠佳,限制了锡基钙钛矿太阳能电池(TPSC)光电转换效率的提高。本研究在锡基钙钛矿薄膜的制备流程中引入了一种低温退火处理,即在钙钛矿薄膜旋涂结束后先进行低温退火再进行常规的90 ℃退火。该处理可在不改变钙钛矿晶型且不引入新的组分的前提下减缓钙钛矿薄膜结晶过程中的晶体生长,从而减少锡基钙钛矿薄膜表面的孔洞缺陷,提高薄膜的光捕获能力,降低器件内载流子复合。最优器件效率由3.65%提高到了5.38%,填充因子提高了29.84%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余海燕
许方贤
张帅
袁宁一
丁建宁
关键词:  锡基钙钛矿太阳电池  结晶控制  低温退火  缺陷钝化    
Abstract: Iin-based perovskite has been considered as a candidate material to replace lead based perovskite because of its ideal band gap and high carrier efficiency. However, the rapid crystallization rate has been one of the obstacles limiting the photoelectric conversion of tin-based perovskite solar cells. A simple and low-cost method is used here. After spinning perovskite film is annealed at low temperature, and then annealed at 90 ℃. The objective is to slow down the growth of perovskite crystals in the process of crystallization without changing the type of perovskite crystals and introducing new components. By this method, the light absorption efficiency of perovskite thin films is improved, the surface hole defects are reduced, and the carrier recombination in the device is reduced. Equipment filling coefficient increased by 29.84%, efficiency increased from 3.645% to 5.38%.
Key words:  tin-based perovskite solar cells    crystallization controlled    low temperature annealing    defect passivation
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  O782  
基金资助: 国家自然科学基金(51602031); 常州市科技支撑计划 (CE20215025)
通讯作者:  * 张帅,常州大学材料科学与工程学院副教授、硕士研究生导师。2004年东南大学生物医学工程专业本科毕业,2007年东南大学生物医学工程专业硕士毕业,2011年大阪大学环境与能源专业博士毕业后到常州大学大学工作至今,目前主要从事纳米材料结构和功能,包括钙钛矿太阳电池、光催化剂和胶体粒子等方面的研究工作。以第一或通信作者身份在Journal of Power Sources、Solar Energy Materials and Solar Cells、Solar Energy、Functional Materials Letters、 Power Sources、Journal of Nanoparticle Research、ACS Applied Materials & Interfaces等SCI学术期刊发表研究论文10余篇。shuaizhang@cczu.edu.cn   
作者简介:  余海燕,2016—2023年就读于常州大学,并于2020年7月获得学士学位,2023年6月获得硕士学位。在张帅教授的指导下进行研究。目前主要研究领域为钙钛矿太阳电池。
引用本文:    
余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
YU Haiyan, XU Fangxian, ZHANG Shuai, YUAN Ningyi, DING Jianning. A Method for Improving the Efficiency of Tin-based Perovskite Solar Cells by Low Temperature Annealing Treatment. Materials Reports, 2023, 37(23): 23020020-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020020  或          http://www.mater-rep.com/CN/Y2023/V37/I23/23020020
1 Akihiro, Kojima, Kenjiro, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
2 Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.
3 Yang W, Igbari F, Lou Y H, et al. Advanced Energy Materials, 2020, 10(13), 1902584.
4 Liu T H, Chen K, Hu Q, et al. Advanced Energy Materials, 2016, 6, 1600457
5 Zhu Z, Jiang X, Yu D, et al. ACS Energy Letters, 2022, 7, 2079.
6 Yang W F, Igbari F, Lou Y H, et al. Advanced Energy Materials, 2020, 10(13), 1902584.
7 Wang F, Jiang X, Chen H, et al. Joule, 2018, 2(12), 2732.
8 Jiang X, Li H, Zhou Q, et al. Journal of the American Chemical Society, 2021, 143(29), 10970.
9 Wu T, Liu X, He X, et al. Science China Chemistry, 2020, 63(1), 107.
10 Kayesh M E, Matsuishi K, Kaneko R, et al. ACS Energy Letters, 2018, 4(1), 278.
11 Dong J J, Shao S Y, Kahmann S, et al. Advanced Functional Materials, 2020, 30(24), 2001294.
12 Fujihara T, Terakawa S, Matsushima T, et al. Journal of Materials Che-mistry C, 2017, 5(5), 1121.
13 Ding B, Li Y, Huang S Y, et al. Journal of Materials Chemistry A, 2017, 5(15), 6840.
14 Cui D, Liu X, Wu T, et al. Advanced Functional Materials, 2021, 31(25), 2100931.
15 Wang L, Lu Y, Liu W, et al. Chemical Physics Letters, 2021, 767, 138362.
16 Wang T, Zheng F, Tang G, et al. Advanced Science, 2021, 8(11), 2004315.
17 Liu X, Wang Y, Wu T, et al. Nature Communications, 2020, 11(1), 2678.
18 W Liu, Z Hu, L Wang, M. Cao, et al. Journal of Inorganic Materials,2021,36,629.
19 Liu X, Yan K, Tan D, et al. ACS Energy Letters, 2018, 3(11), 2701.
20 Liu W, Cao M, Zhang J, et al. Journal of Power Sources, 2022, 530, 231294.
21 Meng X, Wang Y, Lin J, et al. Joule, 2020, 4(4), 902.
22 de Quilettes D W, Vorpahl S M, Stranks S D, et al. Science, 2015, 348(6235), 683.
23 He Y, Abdellaoui I, Abdel-Shakour M, et al. Japanese Journal of Applied Physics, 2021, 60, SBBF13.
24 Zhang S, Lu Y, Lin B, et al. Solar Energy Materials and Solar Cells, 2017, 170, 178.
25 Chen B, Hu H, Salim T, et al. Journal of Materials Chemistry C, 2019, 7(19), 5646.
26 Liu J, Cao M, Feng Z, et al. Journal of Alloys and Compounds, 2022, 920, 165885.
27 Pitarch-Tena D, Ngo T T, Valles-Pelarda M, et al. ACS Energy Letters, 2018, 3(4), 1044.
28 Zhang S, Hu Z, Zhang J, et al. Journal of Power Sources, 2019, 438, 226987.
29 Wang C, Zhang Y, Gu F, et al. Matter, 2021, 4(2), 709.
30 Zhao Z, Gu F, Li Y, et al. Advanced Science, 2017, 4(11), 1700204.
31 Guerrero A, Garcia-Belmonte G, Mora-Sero I, et al. The Journal of Phy-sical Chemistry C, 2016, 120(15), 8023.
32 Wang Q, Moser J E, Grätzel M. The Journal of Physical Chemistry B, 2005, 109(31), 14945.
33 Wang L, Lu Y, Liu W, et al. Chemical Physics Letters, 2021, 767, 138362.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[3] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[4] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[5] 肖学峰, 徐家跃, 向卫东. 镥基闪烁晶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 12-19.
[6] 刘旭东, 毕孝国, 孙旭东. 焰熔法生长钛酸锶单晶体生长室内温度分布的数值模拟*[J]. 《材料导报》期刊社, 2017, 31(16): 138-143.
[7] 李雨萌, 田甜, 徐家跃. 外尔半金属TaAs单晶的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 120-125.
[8] 赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
[9] 王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed