Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 21-25    https://doi.org/10.11896/j.issn.1005-023X.2017.022.005
  材料研究 |
类金字塔状GaN微米结构的生长及其形貌表征
赵晨1,2,贾伟1,2,樊腾1,2,仝广运1,2,李天保1,2,翟光美1,2,马淑芳1,2,许并社1,2
1 太原理工大学新材料工程技术研究中心,太原 030024;
2 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
The Growth and Morphology Characterization of GaN Micro pyramid Structure
ZHAO Chen1,2, JIA Wei1,2, FAN Teng1,2, TONG Guangyun1,2, LI Tianbao1,2,ZHAI Guangmei1,2, MA Shufang1,2, XU Bingshe1,2
1 Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024;
2 Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金属有机化学气相沉积(MOCVD)技术,在非掺杂GaN层上原位生长SiNx掩模层,制备了形貌可控的类金字塔状GaN微米结构,并系统研究了生长温度、生长时间、反应压力和Ⅴ/Ⅲ比等不同生长参数对其形貌的影响。研究结果表明,在生长温度为1 075 ℃时,所生长的GaN呈现出类金字塔状微米锥结构;当生长时间由3 min延长至20 min时,微米锥的底面直径由3.6 μm增大到19.8 μm,密度由3.8×103cm-2降低至0.8×103cm-2;压力及Ⅴ/Ⅲ比共同决定该结构顶部的微观形貌(锥状或截顶锥状)。本工作的研究结果为GaN微钠米结构的原位可控生长奠定了一定基础,并有助于三维GaN基LED器件的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晨
贾伟
樊腾
仝广运
李天保
翟光美
马淑芳
许并社
关键词:  类金字塔状GaN微米结构  金属有机化学气相沉积  原位生长SiNx掩模层  三维GaN基LED器件    
Abstract: The GaN micro-pyramid was grown on unintentional doped GaN epitaxial layers with in-situ pre-deposited SiNx mask via metal organic chemical vapor deposition (MOCVD).The effects of growth temperature, growth time, reaction pressure and Ⅴ/Ⅲ ratio on morphology of the GaN micro-pyramids were studied systematically. The results showed that the GaN micro-pyramid structures were formed at 1 075 ℃. As the growth time was prolonged from 3 min to 20 min, the basal diameter of the GaN micro-pyramids increased from 3.6 μm to 19.8 μm, while the density decreased from 3.8×103 cm-2 to 0.8×103 cm-2. The final complete pyramid-like or truncated pyramid-like GaN micro-structures was mainly determined by reaction pressure and Ⅴ/Ⅲ ratio. These results pave the way for the controllable in-situ growth of GaN micro/nano structures and may facilitate the further development of three-dimensional GaN-based LED devices.
Key words:  GaN micro-pyramid    metal organic chemical vapor deposition    in-situ deposited SiNx mask    three-dimensional GaN-based LED device
                    发布日期:  2018-05-08
ZTFLH:  O782+.9  
基金资助: *国家自然科学基金(21471111;61604104);山西省基础研究项目(201601D202029);山西省科技创新重点团队(201605D131045-10)
通讯作者:  许并社,男,1955年生,博士,教授,博士研究生导师,主要研究方向为新材料界面超微观结构与性能之间的关系E-mail:xubs@tyut.edu.cn   
作者简介:  赵晨:男,1991年生,硕士,主要研究方向为半导体光电材料E-mail:zhaochen6280919@163.com
引用本文:    
赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
ZHAO Chen, JIA Wei, FAN Teng, TONG Guangyun, LI Tianbao,ZHAI Guangmei, MA Shufang, XU Bingshe,. The Growth and Morphology Characterization of GaN Micro pyramid Structure. Materials Reports, 2017, 31(22): 21-25.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.005  或          http://www.mater-rep.com/CN/Y2017/V31/I22/21
1 Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes[J]. Appl Phys Lett, 1993,62(19):2390.
2 Crawford M H. LEDs for solid-state lighting performance challenges and recent advances[J]. J Selected Topic Quantum Electron, 2009,15(4):13.
3 Dai Q, Schubert M F, Kim M H, et al. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities[J]. Appl Phys Lett, 2009,94(11):111109.
4 Lu I L, Wu Y R, Singh J. A study of the role of dislocation density, indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar light-emitting diodes using drift-diffusion coupled with a Monte Carlo method[J]. J Appl Phys, 2010,108(12):124508.
5 De S, Layek A, Bhattacharya S, et al. Quantum-confined stark effect in localized luminescent centers within InGaN/GaN quantum-well based light emitting diodes[J]. Appl Phys Lett, 2012,101(12):121919.
6 Qiming L, Westlake K R, Wang G T, et al. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays[J]. Optics Express, 2011,19(25):25529.
7 Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Phys Status Solidi A, 2010,207(10):2217.
8 Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl Phys Lett, 2007,91(18):183507.
9 Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence[J]. Appl Phys Lett, 2007,91(14):141101.
10 Li S, Waag A. GaN based nanorods for solid state lighting[J]. J Appl Phys, 2012,111(7):071101.
11 Jung B O, Bae S Y, Lee S, et al. Emission characteristics of InGaN/GaN core-shell nanorods embedded in a 3D light-emitting diode[J]. Nanoscale Res Lett, 2016,11(1):215.
12 Hou Y, Bai J, Smith R, et al. A single blue nanorod light emitting diode[J]. Nanotechnology, 2016,27(20):205205.
13 Zhou P, Ren X Y, Yuan J S. XRD and AFM ivestigation of GaN nanocolumns grown by MBE[J]. J Chongqing University of Technology(Natural Science), 2014(4):104(in Chinese).
周平,任宵钰,苑进社.MBE生长GaN纳米柱XRD和AFM分析[J].重庆理工大学学报(自然科学版),2014(4):104.
14 Rizal U, Swain B S, Swain B P. The role of ammonization on chemical bonding and optical properties of nickel-catalyzed gallium nitride nanowire[J]. Appl Phys A, 2016,122(4):1.
15 Saleem U, Wang H, Peyrot D, et al. Germanium-catalyzed growth of single-crystal GaN nanowires[J]. J Crystal Growth, 2016,439:28.
16 Xu B S, Yang D, Ma S F, et al. Synthesis of large-scale GaN nanobelts by chemical vapor deposition[J]. Appl Phys Lett, 2006,89(7):074106.
17 Wang Y D, Chua S J, Tripathy S, et al. High optical quality GaN nanopillar arrays[J]. Appl Phys Lett,2005,86(7):071917.
18 Chiu C H, Lu T C, Huang H W, et al. Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands[J]. Nanotechnology, 2007,18(44):445201.
19 Paramanik D, Motayed A, Aluri G S, et al. Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme[J]. J Vacuum Sci Technol B, 2012,30(5):052202.
20 Wang H T, Zhai G M, Xu B S, et al. The morphologies and optical properties of three-dimensional GaN nano-cone arrays[J]. RSC Adv, 2016,6(49):43272.
21 L undin W V, Zavarin E E, Rozhavskaya M M, et al. Specific features of gallium nitride selective epitaxy in round windows[J]. Tech Phys Lett, 2011,37(8):735.
22 Chiu C H, Yen H H, Chao C L, et al. Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template[J]. Appl Phys Lett, 2008,93(8):081108.
23 Yang D, Liang H, Qiu Y, et al. Improvement of the quality of GaN epilayer by combining a SiNx interlayer and changed GaN growth mode[J]. J Mater Sci: Mater Electron, 2013,24(8):2716.
24 Qin Q, Yu N S, Chen H, et al. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition[J]. Acta Phys Sin,2005,54(11):5450(in Chinese).
秦琦, 于乃森, 陈弘, 等.使用SiNx原位淀积方法生长的GaN外延膜中的应力研究[J]. 物理学报, 2005,54(11):5450.
25 Liu J, Wang J, Gong X, et al. Structure, stress state and piezoelectric property of GaN nanopyramid arrays[J]. Appl Phys Express, 2011,4(4):045001.
26 Peng D S, Feng Y C, Niu H B. Lateral epitaxial overgrowth GaN thin film with MOCVD[J]. Electron Componets Mater, 2009,29(2):67(in Chinese).
彭冬生, 冯玉春, 牛憨笨. MOCVD法横向外延过生长GaN薄膜[J]. 电子元件与材料, 2009,29(2):67.
27 Liu H P, Chen I G, Tsay J, et al. Influence of growth temperature on surface morphologies of GaN crystals grown on dot-patterned substrate by hydride vapor phase epitaxy[J]. J Electroceram, 2004(13):839.
28 Jindal V, Shahedipour-Sandvik F. Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes[J]. J Appl Phys, 2009, 106(8):083115.
29 Moscatelli D, Caccioppoli P, Cavallotti C. Ab initio study of the gas phase nucleation mechanism of GaN[J]. Appl Phys Lett, 2005,86(9):091106.
30 Moscatelli D, Cavallotti C. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE[J]. J Phys Chem A, 2007,111(21):4620.
31 Kappers M J, Datta R, Oliver R A, et al. Threading dislocation reduction in (0001) GaN thin films using SiNx interlayers[J]. J Crystal Growth, 2007, 300(1):70.
32 Hiramatsu K, Nishiyama K, Onishi M. Fabrication and characte-rization of low defect density GaN using facet-controlled epitaxial lateral overgrowth[J]. J Crystal Growth, 2000,221:316.
[1] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed