Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 15-20    https://doi.org/10.11896/j.issn.1005-023X.2017.022.004
  材料研究 |
高效温和制备纳米片状β-Co(OH)2用于超级电容器电极
张鸿宇1,2,李治应1,2,曾蓉1,2
1 北京有色金属研究总院能源材料与技术研究所,北京 100088;
2 北京市有色金属新能源基础制品工程技术研究中心,北京100088
Highly Efficient, Mild Synthesis of ββ-Co(OH)2 Nanoplatelets with an Application to Supercapacitor Electrode
ZHANG Hongyu1,2, LI Zhiying1,2, ZENG Rong1,2
1 Department of Energy Materials and Technology,General Research Institute for Nonferrous Metal, Beijing 100088;
2 Beijing Engineering Research Center of Non-ferrous Metal Products for New Energy, Beijing 100088
下载:  全 文 ( PDF ) ( 739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水合氯化钴为原料,氢氧化钠和水合肼为碱性沉淀剂,在不添加任何分散剂的情况下采用化学沉淀法制备出呈六边形的片状β-Co(OH)2。采用X射线衍射和透射电子显微镜表征所制样品的结构和形貌,采用循环伏安和恒电流充放电等测试方法对其电化学性能进行初步研究。结果表明,六边形片状β-Co(OH)2边长为100~200 nm,厚度为几十纳米,且随氯化钴溶液浓度的降低,单晶片的厚度逐渐减小。其表现出一定的电化学性能,电流密度为1 A/g时,比电容可达到83.3 F/g,且性能稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鸿宇
李治应
曾蓉
关键词:  β-Co(OH)2  沉淀  纳米片  电化学性能  高效制备  温和制备  超级电容器  比电容    
Abstract: A highly efficient, mild (also dispersant-free) method has been developed in this work for synthesizing β-Co(OH)2nanoplatelets, by using hydrated cobalt chloride as raw material, sodium hydroxide and hydrazine hydrate as alkaline precipitating agents. The morphology and microstructure of the product were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The edge length of hexagonal β-Co(OH)2 nanoplatelets is about 100—200 nm and the thickness is about tens of nanometers. As the concentration of cobalt chloride solution decreasing, the thickness of the single-chip of β-Co(OH)2 gets attenuated. The electrochemical performances of the as-synthesized samples were investigated by cyclic voltammetry and constant-current charge/discharge test. The thinner cobalt hydroxide will lead to higher specific capacitance of β-Co(OH)2, and it can reach 83.3 F/g at the current density of 1 A/g along with a high stability.
Key words:  β-Co(OH)2    precipitation    nanoplatelet    electrochemical performance    highly efficient synthesis    mild synthesis    supercapacitor    specific capacitance
                    发布日期:  2018-05-08
ZTFLH:  TQ031.2  
基金资助: *科技部院所基金(2013EG115003)
通讯作者:  曾蓉,女,1970年生,博士,高级工程师,硕士研究生导师,研究方向为电化学E-mail:zr_zengrong@163.com   
作者简介:  张鸿宇:女,1991年生,硕士研究生,研究方向为燃料电池E-mail:bjxzhy@163.com
引用本文:    
张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
ZHANG Hongyu, LI Zhiying, ZENG Rong,. Highly Efficient, Mild Synthesis of ββ-Co(OH)2 Nanoplatelets with an Application to Supercapacitor Electrode. Materials Reports, 2017, 31(22): 15-20.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.004  或          http://www.mater-rep.com/CN/Y2017/V31/I22/15
1 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008,7(11):845.
2 Zhou W J, Zhang J, Xue T, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J]. J Mater Chem, 2008,18(8):905.
3 Xie X Y, Zhang C,Yang Q H. The development of electrode materials for supercapacitors[J]. Chem Ind Eng, 2014,31(1):63(in Chinese).
谢小英, 张辰, 杨全红. 超级电容器电极材料研究进展[J]. 化学工业与工程, 2014,31(1):63.
4 Shang H T, Yue L P, Yang X K, et al. The struct and application development of supercapacitor[J]. Chem Eng Equipment, 2014(9):177 (in Chinese).
商洪涛, 岳立平, 杨献奎,等. 超级电容器结构及应用发展概述[J]. 化学工程与装备, 2014(9):177.
5 Javashrtt R S, Vishnu Kamath P. Electrochemical synthesis of[small alpha]-cobalt hydroxide[J]. J Mater Chem,1999,9(4):961.
6 Yan X, Tong X, Wang J, et al. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application[J]. J Alloys Compd, 2014,593(6):184.
7 Lee J W, Ahn T, Soundararajan D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior[J]. Chem Commun, 2011,47(22):6305.
8 Wang L, Fu J, Zhang Y, et al. Mesoporous β-Co(OH)2, nanowafers and nanohexagonals obtained synchronously in one solution and their electrochemical hydrogen storage properties[J]. Prog Nat Sci Mater Int, 2016,26:555.
9 Zheng X. Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes[J]. RSC Adv, 2015,5(22):17007.
10 Lu X. Controllable synthesis of porous nickel-cobalt oxide nanos-heets for supercapacitors[J]. J Mater Chem, 2012,22(26):13357.
11 Jia Z J,Wang J, Wang Y. Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Sci Technol, 2014(4):322(in Chinese).
贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014(4):322.
12 Liu M B,Duan L W,Yin W Z. Study on composing and application of electrode material additive Co(OH)2[J].Mining Metall, 2011(3):57(in Chinese).
刘明宝, 段理祎, 印万忠. 电极材料添加剂氢氧化亚钴的合成及应用研究[J]. 矿冶, 2011(3):57.
13 Yongge L V, Yong L I, Na T A, et al. Co3O4 nanosheets:Synthesis and catalytic application for CO oxidation at room temperature[J]. Sci China Chem, 2014,57(6):873.
14 El-Batlouni H, El-Rassy H, Al-Ghoul M. Cosynthesis, coexistence, and self-organization of α- and β-cobalt hydroxide based on diffusion and reaction in organic gels[J]. J Phys Chem A, 2008,112(34):7755.
15 Gupta A, Tiwari S D, Kumar D. Nature of magnetic interactions in β-Co(OH)2 nanoparticles[J]. Phys Status Solidi, 2016,253(9):1795.
16 Ismail J, Ahmed M F, Kamath P V, et al. Organic additive-mediated synthesis of novel cobalt(Ⅱ) hydroxides[J]. J Solid State Chem, 1995,114(114):550.
17 Ma M X, Liang J F, Ding C M. Structure and wetting properties of rose-like cobalt hydroxide[J]. Chin J Inorgan Chem, 2015,31(6):1071.
18 Wang B X, Lin H, Yin Z G. Hydrothermal synthesis of β-cobalt hydroxide with various morphologies in water/ethanol solutions[J]. Mater Lett, 2011,65(1):41.
19 Schwezer B, Roth K M, Gomm J R, et al. Kinetically controlled vapor-diffusion synthesis of novel nanostructured metal hydroxide and phosphate films using no organic reagents[J]. J Mater Chem, 2006,16(4):401.
20 Xu Z P, Zeng H C. A new approach for design and synthesis of Co Ⅱ, and Co Ⅱ,Ⅲ, hydroxide materials[J]. Int J Inorgan Mater, 2000,2(2-3):187.
21 Ting Z, Hao J, Jan M. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors[J]. J Power Sources, 2011,196(2):860.
22 Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electroche-mical capacitors[J]. J Power Sources, 2009, 194(2):1194.
23 Chang Z R,Li B,Li Y P, et al. Studies on the electrochemical properties of cobalt hydroxide[J]. Chem World, 2003,44(11):566(in Chinese).
常照荣, 李苞, 李云平,等. Co(OH)2的电化学性能研究[J]. 化学世界, 2003, 44(11):566.
24 Feng Z H. Research on preparation and electrochemical properties of β-Co(OH)2 by solid-state reactions at room temperature[D].Qinhuangdao: Yanshan University,2009(in Chinese).
冯忠厚. β-Co(OH)2的室温固相制备和电化学性能研究[D]. 秦皇岛:燕山大学, 2009.
25 Ganesh V, Lakshminarayanan V, Pitchumani S. Assessment of liquid crystal template deposited porous nickel as a supercapacitor electrode material[J]. Electrochem Solid-State Lett, 2005,8(6):A308.
26 Hou Y, Kondoh H, Shimojo M, et al. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characte-rization[J]. J Phys Chem B, 2005,109(41):19094.
27 Cui T, Zhao Y, Qian Y, et al. Controllable synthesis and formation mechanism of single-crystal β-Co(OH)2, microrings as sensors for detection of nitrite ions[J]. Mater Chem Phys, 2017,193:371.
28 Mo L P, Shi J, Feng X J, et al. Synthesis of sheet-like Co(OH)2 and its electrochemical performances[J].J Northwest Normal University (Nat Sci), 2008, 44(1):56(in Chinese).
莫丽萍, 石俊, 冯晓娟,等. 片状Co(OH)2的制备及其电化学性能研究[J]. 西北师范大学学报(自然科学版), 2008,44(1):56.
29 Zhu Z F, Lv J, Liu H, et al. Hydrothermal synthesis and characterization morphology-controlled of Co3O4 nanocrystals[J].J Synthetic Crystals, 2015(11):2988(in Chinese).
朱振峰, 吕景, 刘辉,等. 形貌可控Co3O4纳米晶的水热合成及表征[J]. 人工晶体学报, 2015(11):2988.
30 Yao W L,Yang J,Cheng H W. Hydrothermal synthesis and effects on morphology of micro-/nano- materials of hexagona β-Co(OH)2[J]. Sci Sin Chim, 2010(11):1598(in Chinese).
姚文俐, 杨军, 程红伟. 微/纳米六方β-Co(OH)2水热法制备及影响因素[J]. 中国科学:化学, 2010(11):1598.
31 Zhu L W, Yan Y H, Jia H, et al. Hydrothermal one-step synthesis of layered nickel/cobalt double hydroxide using shape-directing agent and homogeneous precipitating agent[J]. J Electrochem, 2016(4):412.
32 Deng D, Xing X, Chen N, et al. Hydrothermal synthesis of β-Co(OH)2, nanoplatelets: A novel catalyst for CO oxidation[J].J Phys Chem Solids, 2017,100:107.
33 Xie L J, Jin X Q, Fu G R, et al. Preparation and electrochemical capacitance of α-Co(OH)2 for supercapacitors[J].Chem J Chin Universities, 2010,31(2):353(in Chinese).
谢莉婧, 金小青, 付国瑞,等. α-Co(OH)2的制备及其超级电容特性[J]. 高等学校化学学报, 2010,31(2):353.
34 Li H, Liu Y, Zhao X C. Magnetic ultrafine cobalt particles prepared by solution chemical reduction method[J]. J Magnetic Mater Devices, 2012,43(2):36(in Chinese).
李红, 刘颖, 赵修臣. 液相化学还原法制备的超细钴粒子[J]. 磁性材料及器件, 2012, 43(2):36.
35 Zheng H G, Zeng J H, Yu H M, et al. Study on behavior of hydrazine hydrate in synthesis of metallic nanopowders[J]. J University of Science and Technology of China, 1999(6):722(in Chinese).
郑化桂, 曾京辉, 余华明,等. 联氨在金属纳米粉制备中的行为研究[J]. 中国科学技术大学学报, 1999(6):722.
36 Shi Z Y. Study on performance of membrane electrode assembly for proton exchange membrane fuel cells[D]. Tianjin:Tianjin University,2006(in Chinese).
石肇元. 质子交换膜燃料电池膜电极性能的研究[D]. 天津:天津大学, 2006.
37 Srinivasan V, Weidner J W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. J Power Sources, 2002,108(1-2):15.
38 Dong L,Li Y,Liu T J, et al. Solvothermal synthesis and electrochemical property of Co(OH)2 /activated carbon composites[J]. J Synthetic Crystals, 2015,44(8):2217(in Chinese).

董丽, 李影, 刘铁军,等. 溶剂热合成Co(OH)2/活性炭复合电极材料及其电化学性能研究[J]. 人工晶体学报, 2015,44(8):2217.
39 Fu G R,Hu Z A. Preparation of Co(OH)2 by precipitation and its electrochemical performance[J].Mater Mechan Eng, 2013(8):31(in Chinese).
付国瑞, 胡中爱. 沉淀法制备Co(OH)2及其电化学性能[J]. 机械工程材料, 2013(8):31.
40 Tang H W,Si Y L,Guo D L, et al. Synthesis and electrochemical properties of multilayer α-Co(OH)2[J].Mater Rev:Res, 2014,28(4):46(in Chinese).
汤宏伟, 司艳丽, 郭东磊,等. 多层球形α-Co(OH)2的制备及其电化学性能[J]. 材料导报:研究篇, 2014,28(4):46.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[5] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[8] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[9] 苏慧,朱兆武,王丽娜,齐涛. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126.
[10] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[11] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[12] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[13] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[14] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[15] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed