Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 15-20    https://doi.org/10.11896/j.issn.1005-023X.2017.022.004
  材料研究 |
高效温和制备纳米片状β-Co(OH)2用于超级电容器电极
张鸿宇1,2,李治应1,2,曾蓉1,2
1 北京有色金属研究总院能源材料与技术研究所,北京 100088;
2 北京市有色金属新能源基础制品工程技术研究中心,北京100088
Highly Efficient, Mild Synthesis of ββ-Co(OH)2 Nanoplatelets with an Application to Supercapacitor Electrode
ZHANG Hongyu1,2, LI Zhiying1,2, ZENG Rong1,2
1 Department of Energy Materials and Technology,General Research Institute for Nonferrous Metal, Beijing 100088;
2 Beijing Engineering Research Center of Non-ferrous Metal Products for New Energy, Beijing 100088
下载:  全 文 ( PDF ) ( 739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水合氯化钴为原料,氢氧化钠和水合肼为碱性沉淀剂,在不添加任何分散剂的情况下采用化学沉淀法制备出呈六边形的片状β-Co(OH)2。采用X射线衍射和透射电子显微镜表征所制样品的结构和形貌,采用循环伏安和恒电流充放电等测试方法对其电化学性能进行初步研究。结果表明,六边形片状β-Co(OH)2边长为100~200 nm,厚度为几十纳米,且随氯化钴溶液浓度的降低,单晶片的厚度逐渐减小。其表现出一定的电化学性能,电流密度为1 A/g时,比电容可达到83.3 F/g,且性能稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鸿宇
李治应
曾蓉
关键词:  β-Co(OH)2  沉淀  纳米片  电化学性能  高效制备  温和制备  超级电容器  比电容    
Abstract: A highly efficient, mild (also dispersant-free) method has been developed in this work for synthesizing β-Co(OH)2nanoplatelets, by using hydrated cobalt chloride as raw material, sodium hydroxide and hydrazine hydrate as alkaline precipitating agents. The morphology and microstructure of the product were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The edge length of hexagonal β-Co(OH)2 nanoplatelets is about 100—200 nm and the thickness is about tens of nanometers. As the concentration of cobalt chloride solution decreasing, the thickness of the single-chip of β-Co(OH)2 gets attenuated. The electrochemical performances of the as-synthesized samples were investigated by cyclic voltammetry and constant-current charge/discharge test. The thinner cobalt hydroxide will lead to higher specific capacitance of β-Co(OH)2, and it can reach 83.3 F/g at the current density of 1 A/g along with a high stability.
Key words:  β-Co(OH)2    precipitation    nanoplatelet    electrochemical performance    highly efficient synthesis    mild synthesis    supercapacitor    specific capacitance
发布日期:  2018-05-08
ZTFLH:  TQ031.2  
基金资助: *科技部院所基金(2013EG115003)
通讯作者:  曾蓉,女,1970年生,博士,高级工程师,硕士研究生导师,研究方向为电化学E-mail:zr_zengrong@163.com   
作者简介:  张鸿宇:女,1991年生,硕士研究生,研究方向为燃料电池E-mail:bjxzhy@163.com
引用本文:    
张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
ZHANG Hongyu, LI Zhiying, ZENG Rong,. Highly Efficient, Mild Synthesis of ββ-Co(OH)2 Nanoplatelets with an Application to Supercapacitor Electrode. Materials Reports, 2017, 31(22): 15-20.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.004  或          https://www.mater-rep.com/CN/Y2017/V31/I22/15
1 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008,7(11):845.
2 Zhou W J, Zhang J, Xue T, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J]. J Mater Chem, 2008,18(8):905.
3 Xie X Y, Zhang C,Yang Q H. The development of electrode materials for supercapacitors[J]. Chem Ind Eng, 2014,31(1):63(in Chinese).
谢小英, 张辰, 杨全红. 超级电容器电极材料研究进展[J]. 化学工业与工程, 2014,31(1):63.
4 Shang H T, Yue L P, Yang X K, et al. The struct and application development of supercapacitor[J]. Chem Eng Equipment, 2014(9):177 (in Chinese).
商洪涛, 岳立平, 杨献奎,等. 超级电容器结构及应用发展概述[J]. 化学工程与装备, 2014(9):177.
5 Javashrtt R S, Vishnu Kamath P. Electrochemical synthesis of[small alpha]-cobalt hydroxide[J]. J Mater Chem,1999,9(4):961.
6 Yan X, Tong X, Wang J, et al. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application[J]. J Alloys Compd, 2014,593(6):184.
7 Lee J W, Ahn T, Soundararajan D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior[J]. Chem Commun, 2011,47(22):6305.
8 Wang L, Fu J, Zhang Y, et al. Mesoporous β-Co(OH)2, nanowafers and nanohexagonals obtained synchronously in one solution and their electrochemical hydrogen storage properties[J]. Prog Nat Sci Mater Int, 2016,26:555.
9 Zheng X. Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes[J]. RSC Adv, 2015,5(22):17007.
10 Lu X. Controllable synthesis of porous nickel-cobalt oxide nanos-heets for supercapacitors[J]. J Mater Chem, 2012,22(26):13357.
11 Jia Z J,Wang J, Wang Y. Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Sci Technol, 2014(4):322(in Chinese).
贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014(4):322.
12 Liu M B,Duan L W,Yin W Z. Study on composing and application of electrode material additive Co(OH)2[J].Mining Metall, 2011(3):57(in Chinese).
刘明宝, 段理祎, 印万忠. 电极材料添加剂氢氧化亚钴的合成及应用研究[J]. 矿冶, 2011(3):57.
13 Yongge L V, Yong L I, Na T A, et al. Co3O4 nanosheets:Synthesis and catalytic application for CO oxidation at room temperature[J]. Sci China Chem, 2014,57(6):873.
14 El-Batlouni H, El-Rassy H, Al-Ghoul M. Cosynthesis, coexistence, and self-organization of α- and β-cobalt hydroxide based on diffusion and reaction in organic gels[J]. J Phys Chem A, 2008,112(34):7755.
15 Gupta A, Tiwari S D, Kumar D. Nature of magnetic interactions in β-Co(OH)2 nanoparticles[J]. Phys Status Solidi, 2016,253(9):1795.
16 Ismail J, Ahmed M F, Kamath P V, et al. Organic additive-mediated synthesis of novel cobalt(Ⅱ) hydroxides[J]. J Solid State Chem, 1995,114(114):550.
17 Ma M X, Liang J F, Ding C M. Structure and wetting properties of rose-like cobalt hydroxide[J]. Chin J Inorgan Chem, 2015,31(6):1071.
18 Wang B X, Lin H, Yin Z G. Hydrothermal synthesis of β-cobalt hydroxide with various morphologies in water/ethanol solutions[J]. Mater Lett, 2011,65(1):41.
19 Schwezer B, Roth K M, Gomm J R, et al. Kinetically controlled vapor-diffusion synthesis of novel nanostructured metal hydroxide and phosphate films using no organic reagents[J]. J Mater Chem, 2006,16(4):401.
20 Xu Z P, Zeng H C. A new approach for design and synthesis of Co Ⅱ, and Co Ⅱ,Ⅲ, hydroxide materials[J]. Int J Inorgan Mater, 2000,2(2-3):187.
21 Ting Z, Hao J, Jan M. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors[J]. J Power Sources, 2011,196(2):860.
22 Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electroche-mical capacitors[J]. J Power Sources, 2009, 194(2):1194.
23 Chang Z R,Li B,Li Y P, et al. Studies on the electrochemical properties of cobalt hydroxide[J]. Chem World, 2003,44(11):566(in Chinese).
常照荣, 李苞, 李云平,等. Co(OH)2的电化学性能研究[J]. 化学世界, 2003, 44(11):566.
24 Feng Z H. Research on preparation and electrochemical properties of β-Co(OH)2 by solid-state reactions at room temperature[D].Qinhuangdao: Yanshan University,2009(in Chinese).
冯忠厚. β-Co(OH)2的室温固相制备和电化学性能研究[D]. 秦皇岛:燕山大学, 2009.
25 Ganesh V, Lakshminarayanan V, Pitchumani S. Assessment of liquid crystal template deposited porous nickel as a supercapacitor electrode material[J]. Electrochem Solid-State Lett, 2005,8(6):A308.
26 Hou Y, Kondoh H, Shimojo M, et al. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characte-rization[J]. J Phys Chem B, 2005,109(41):19094.
27 Cui T, Zhao Y, Qian Y, et al. Controllable synthesis and formation mechanism of single-crystal β-Co(OH)2, microrings as sensors for detection of nitrite ions[J]. Mater Chem Phys, 2017,193:371.
28 Mo L P, Shi J, Feng X J, et al. Synthesis of sheet-like Co(OH)2 and its electrochemical performances[J].J Northwest Normal University (Nat Sci), 2008, 44(1):56(in Chinese).
莫丽萍, 石俊, 冯晓娟,等. 片状Co(OH)2的制备及其电化学性能研究[J]. 西北师范大学学报(自然科学版), 2008,44(1):56.
29 Zhu Z F, Lv J, Liu H, et al. Hydrothermal synthesis and characterization morphology-controlled of Co3O4 nanocrystals[J].J Synthetic Crystals, 2015(11):2988(in Chinese).
朱振峰, 吕景, 刘辉,等. 形貌可控Co3O4纳米晶的水热合成及表征[J]. 人工晶体学报, 2015(11):2988.
30 Yao W L,Yang J,Cheng H W. Hydrothermal synthesis and effects on morphology of micro-/nano- materials of hexagona β-Co(OH)2[J]. Sci Sin Chim, 2010(11):1598(in Chinese).
姚文俐, 杨军, 程红伟. 微/纳米六方β-Co(OH)2水热法制备及影响因素[J]. 中国科学:化学, 2010(11):1598.
31 Zhu L W, Yan Y H, Jia H, et al. Hydrothermal one-step synthesis of layered nickel/cobalt double hydroxide using shape-directing agent and homogeneous precipitating agent[J]. J Electrochem, 2016(4):412.
32 Deng D, Xing X, Chen N, et al. Hydrothermal synthesis of β-Co(OH)2, nanoplatelets: A novel catalyst for CO oxidation[J].J Phys Chem Solids, 2017,100:107.
33 Xie L J, Jin X Q, Fu G R, et al. Preparation and electrochemical capacitance of α-Co(OH)2 for supercapacitors[J].Chem J Chin Universities, 2010,31(2):353(in Chinese).
谢莉婧, 金小青, 付国瑞,等. α-Co(OH)2的制备及其超级电容特性[J]. 高等学校化学学报, 2010,31(2):353.
34 Li H, Liu Y, Zhao X C. Magnetic ultrafine cobalt particles prepared by solution chemical reduction method[J]. J Magnetic Mater Devices, 2012,43(2):36(in Chinese).
李红, 刘颖, 赵修臣. 液相化学还原法制备的超细钴粒子[J]. 磁性材料及器件, 2012, 43(2):36.
35 Zheng H G, Zeng J H, Yu H M, et al. Study on behavior of hydrazine hydrate in synthesis of metallic nanopowders[J]. J University of Science and Technology of China, 1999(6):722(in Chinese).
郑化桂, 曾京辉, 余华明,等. 联氨在金属纳米粉制备中的行为研究[J]. 中国科学技术大学学报, 1999(6):722.
36 Shi Z Y. Study on performance of membrane electrode assembly for proton exchange membrane fuel cells[D]. Tianjin:Tianjin University,2006(in Chinese).
石肇元. 质子交换膜燃料电池膜电极性能的研究[D]. 天津:天津大学, 2006.
37 Srinivasan V, Weidner J W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. J Power Sources, 2002,108(1-2):15.
38 Dong L,Li Y,Liu T J, et al. Solvothermal synthesis and electrochemical property of Co(OH)2 /activated carbon composites[J]. J Synthetic Crystals, 2015,44(8):2217(in Chinese).

董丽, 李影, 刘铁军,等. 溶剂热合成Co(OH)2/活性炭复合电极材料及其电化学性能研究[J]. 人工晶体学报, 2015,44(8):2217.
39 Fu G R,Hu Z A. Preparation of Co(OH)2 by precipitation and its electrochemical performance[J].Mater Mechan Eng, 2013(8):31(in Chinese).
付国瑞, 胡中爱. 沉淀法制备Co(OH)2及其电化学性能[J]. 机械工程材料, 2013(8):31.
40 Tang H W,Si Y L,Guo D L, et al. Synthesis and electrochemical properties of multilayer α-Co(OH)2[J].Mater Rev:Res, 2014,28(4):46(in Chinese).
汤宏伟, 司艳丽, 郭东磊,等. 多层球形α-Co(OH)2的制备及其电化学性能[J]. 材料导报:研究篇, 2014,28(4):46.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[6] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[7] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[8] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[9] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[10] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[11] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[12] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[13] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[14] 周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
[15] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed