Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100030-9    https://doi.org/10.11896/cldb.23100030
  无机非金属及其复合材料 |
大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展
周翔1,2, 李太1,2, 黄振玲1,2, 赵亮1,2, 康家铭1,2, 李绍元1,2, 任永生1,2, 马文会1,2, 吕国强1,2,*
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省硅工业工程研究中心,昆明 650093
Research Progress of Crystal Defects During the Growth of Large Size Czochralski Monocrystalline Silicon
ZHOU Xiang1,2, LI Tai1,2, HUANG Zhenling1,2, ZHAO Liang1,2, KANG Jiaming1,2, LI Shaoyuan1,2, RENG Yongsheng1,2, MA Wenhui1,2, LYU Guoqiang1,2,*
1 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Silicon Industry Engineering Research Center, Kunming 650093, China
下载:  全 文 ( PDF ) ( 4631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能光伏发电的碳排放量仅占化石能源发电的1/20~1/10,是实现“双碳”目标的必然选择和有效途径。随着光伏装机规模的持续增加和太阳能电池效率的不断提高,相关行业对单晶硅片向着低成本、大尺寸、高品质的发展提出了更高的要求。然而,硅片的大尺寸化带来的传热传质不均以及晶体缺陷等问题是影响硅片电学性能的重要因素。本综述对直拉法单晶硅生长过程中缺陷的种类、生长机理以及氮、磷、硼、碳掺杂元素对缺陷的形成与影响的研究现状进行了归纳总结,分析研究了硅中间隙原子、空位以及硅晶格应力的相互影响,并对大尺寸直拉法单晶硅生长过程中晶体缺陷控制技术的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周翔
李太
黄振玲
赵亮
康家铭
李绍元
任永生
马文会
吕国强
关键词:  单晶硅  点缺陷  氧沉淀            
Abstract: Thecarbon emissions of solar photovoltaic power generation account for only 1/20 to 1/10 of traditional fossil energy power generation, which is an inevitable choice and effective way to achieve the carbon peaking and carbon neutrality goals. With the continuous increase of photovoltaic installed capacity and the continuous improvement of solar cell efficiency, photovoltaic and other related industries have put forward higher requirements for the development of monocrystalline silicon wafers towards low cost, large size and high quality. However, the uneven heat and mass transfer and crystal defects caused by the large size of silicon wafers are important factors affecting the electrical properties of silicon wafers. This paper inducts the types and growth mechanism of defects in the growth process of Czochralski single crystal silicon, and summarizes the research status of the formation and influence of nitrogen, phosphorus, boron and carbon doping elements on defects. The interaction of interstitial atoms, vacancies and lattice stress in silicon is studied, and the development direction of crystal defect control technology in the growth process of large-size Czochralski single crystal silicon is prospected.
Key words:  monocrystalline silicon    point defects    oxygen precipitation    nitrogen    phosphorus    boron    carbon
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  O77+1  
  O77+5  
  O77+9  
基金资助: 云南省重点研发项目(202002AB080030;202103AA080003);云南省科技重大专项(202102AB080016;202202AG050012);云南省科技计划项目(202302AD080008)
通讯作者:  * 吕国强,昆明理工大学冶金与能源工程学院教授、博士研究生导师。主要研究方向为硅冶金与硅材料制备过程的传热传质。 lvguoqiang_ok@aliyun.com   
作者简介:  周翔,现为昆明理工大学冶金与能源工程学院硕士研究生,在吕国强老师的指导下进行研究。目前主要研究方向为单晶硅中氧杂质缺陷。
引用本文:    
周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
ZHOU Xiang, LI Tai, HUANG Zhenling, ZHAO Liang, KANG Jiaming, LI Shaoyuan, RENG Yongsheng, MA Wenhui, LYU Guoqiang. Research Progress of Crystal Defects During the Growth of Large Size Czochralski Monocrystalline Silicon. Materials Reports, 2024, 38(24): 23100030-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100030  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100030
1 He Y P. China Securities Journal, 2022-11-21(A06) (in Chinese).
何昱璞. 中国证券报, 2022-11-21(A06).
2 National Energy Administration. Polaris solar photovoltaic network.https://guangfu.bjx.com.cn/news/20230720/1320599.shtml.
国家能源局. 北极星太阳能光伏网. https://guangfu.bjx.com.cn/news/20230720/1320599.shtml.
3 China Photovoltaic Society. Solar Energy, 2020, 318(10), 5 (in Chinese).
中国可再生能源学会光伏分会. 太阳能, 2020, 381(10), 5.
4 Yang J Z, Shen Y. Materials Reports, 2010, 24(15), 126 (in Chinese).
杨灼坚, 沈辉. 材料导报, 2010, 24(15), 126.
5 Wang S W. Simulating the oxygen cluster’s evolution in silicon wafer treated using rapid thermal processing during low temperature annealing based on phase field method. Master’s Thesis, Shandong University, China, 2019 (in Chinese).
王善文. 低温退火期间快速热处理硅片中氧聚集体演变的相场仿真. 硕士学位论文, 山东大学, 2019.
6 Dornberger E, Temmler D, Von Ammon W. Journal of the Electrochemical Society, 2002, 149(4), G226.
7 Taishi T, Huang X, Yonenaga I, et al. Journal of Crystal Growth, 2005, 275(1-2), e2147.
8 Chao C K, Hung S Y. J Cryst Growth, 2003, 256(1-2), 107.
9 Noghabi O A, Jomâa M, M’hamdi M. Journal of Crystal Growth, 2013, 362, 77.
10 Friedrich J, Jung T, Trempa M, et al. Journal of Crystal Growth, 2019, 524, 125168.
11 Hu G X, Cai X. Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China, 2000, pp.76(in Chinese).
胡赓祥, 蔡珣. 材料科学基础, 上海交通大学出版社. 2000, pp.76.
12 Zhao Z G. Motion of indentation dislocations in Czochralski silicon. Master’s Thesis, Zhejiang University, China, 2015 (in China).
赵泽钢. 直拉硅单晶压痕位错的运动. 硕士学位论文, 浙江大学, 2015.
13 Voronkov V V, Voronkova G I, Veselovskaya N V, et al. Kristallografiya, 1984, 29(6), 1176.
14 Eidenzon A M, Puzanov N I. Kristallografiya, 1985, 30(5), 992.
15 De Kock A J R, Van de Wijgert W M. Journal of Crystal Growth, 1980, 49(4), 718.
16 Kelton K F, Falster R, Gambaro D, et al. Journal of Applied Physics, 1999, 85(12), 8097.
17 Abe T, Harada H, Chikawa J. Physica B+C, 1983, 116(1-3), 139.
18 Puzanov N I, Eidenzon A M. Journal of Crystal Growth, 1997, 178(4), 459.
19 Roksnoer P J, Van Den Boom M M B. Journal of Crystal Growth, 1981, 53(3), 563.
20 Voronkov V V, Falster R. Journal of Crystal Growth, 1998, 194(1), 76.
21 Lee W P, Yow H K, Tou T Y. Journal of the Electrochemical Society, 2006, 153(3), G248.
22 Kato M, Yoshida T, Ikeda Y, et al. Japanese Journal of Applied Physics, 1996, 35(11R), 5597.
23 Fang M, Yang D R, Ma X Y, et al. Journal of Materials Science and Engineering, 2006(2), 212 (in Chinese).
方敏, 杨德仁, 马向阳, 等. 材料科学与工程学报, 2006(2), 212.
24 Yamagishi H, Fusegawa I, Fujimaki N, et al. Semiconductor Science and Technology, 1992, 7(1A), A135.
25 Zhang Y X, Cheng M Q. Journal of Semiconductors, 1992(7), 438(in Chinese).
张一心, 程美乔. 半导体学报, 1992(7), 438.
26 Zhao Q, Xie S, Wang H, et al. ECS Journal of Solid State Science and Technology, 2022, 11(2), 023009.
27 Dash W C. Journal of Applied Physics, 1958, 29(4), 736.
28 Voronkov V V. Journal of Crystal Growth, 1982, 59( 3), 625.
29 Nian X F, Huang J L, Deng K, et al. Chinese Journal of Rare Metals, 2018, 42(6), 634 (in Chinese).
年夫雪, 黄嘉丽, 邓康, 等. 稀有金属, 2018, 42(6), 634.
30 Xu Z H, Li J, He X, et al. Journal of Synthetic Crystals, 2023, 52(4), 562 (in Chinese).
徐尊豪, 李进, 何显, 等. 人工晶体学报, 2023, 52(4), 562.
31 Brown R A, Wang Z, Mori T. Journal of Crystal Growth, 2001, 225(2), 97.
32 Habu R, Yunoki I, Saito T, et al. Japanese Journal of Applied Physics, 1993, 32(4R), 1740.
33 Dornberger E, Von Ammon W, Van den Bogaert N, et al. Journal of crystal growth, 1996, 166(1-4), 452.
34 Sinno T, Brown R A, von Ammon W, et al. Journal of the Electrochemical Society, 1998, 145(1), 302.
35 Nishimoto M, Nakamura K, Hourai M, et al. Journal of the Japan Institute of Metals, 2011, 75(12), 657.
36 Abe T. Journal of Crystal Growth, 2022, 590, 126671.
37 Tiller W A, Friedman M, Shaw R, et al. Journal of Crystal Growth, 1998, 186(1-2), 113.
38 Yu X G, Yang D R, Ma X Y, et al. Journal of Semiconductor Information, 2001, 38(3), 33 (in chinese).
余学功, 杨德仁, 马向阳, 等. 半导体情报, 2001, 38(3), 33.
39 Li Z, Liu Y, Wei T, et al. ECS Journal of Solid State Science and Technology, 2022, 11(2), 024007.
40 Niewelt T, Richter A, Kho T C, et al. Solar Energy Materials and Solar Cells, 2018, 185, 252.
41 Xia Y, Suzuki M, Xue P, et al. International Journal of Fatigue, 2022, 162, 106983.
42 Wan W, Tang C, Qiu A, et al. Materials, 2021, 14(11), 3011.
43 Zhang MY, Li T, Du S L, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(9), 3259.
44 Borghesi A, Pivac B, Sassella A, et al. Journal of Applied Physics, 1995, 77(9), 4169.
45 Cui C. Study on oxygen precipitation and systemic impurities of straight-drawn silicon single crystals. Ph. D. Thesis, Zhejiang University, China, 2006 (in Chinese).
崔灿. 直拉硅单晶的氧沉淀及内吸杂的研究. 博士学位论文, 浙江大学, 2006.
46 Li J Y. Study on oxygen-related defects in straight-drawn silicon for photovoltaics. Master’s Thesis, Zhejiang University, China, 2018 (in Chinese).
李继阳. 光伏用直拉硅中氧相关缺陷的研究. 硕士学位论文, 浙江大学, 2018.
47 Li T. Numerical simulation and experimental study on oxygen impurities and dislocations during the growth process of photovoltaic monocrystalline silicon pull-up. Master’s Thesis, Kunming University of Science and Technology, China, 2022 (in Chinese).
李太. 光伏单晶硅提拉法生长过程氧杂质和位错的数值模拟及实验研究. 硕士学位论文, 昆明理工大学, 2022.
48 Sueoka K, Ikeda N, Yamamoto T Y T, et al. Japanese Journal of Applied Physics, 1994, 33(11A), L1507.
49 Wang H, Yang D, Yu X, et al. Journal of Applied Physics, 2004, 96(5), 3031.
50 Rougieux F E, Nguyen H T, Macdonald D H, et al. IEEE Journal of photovoltaics, 2017, 7(3), 735.
51 Minowa K, Yonenaga I, Sumino K. Materials Letters, 1991, 11(5-7), 164.
52 Sueoka K, Ikeda N, Yamamoto T. Applied Physics Letters, 1994, 65 (13), 1686.
53 Dong P. Study on oxygen-related defects in straight-drawn silicon. Ph. D. Thesis, Zhejiang University, China, 2015 (in Chinese).
董鹏. 直拉硅中氧相关缺陷的研究. 博士学位论文, 浙江大学, 2015.
54 Kissinger G, Grabolla T, Morgenstern G, et al. Journal of the Electrochemical Society, 1999, 146(5), 1971.
55 Kissinger G, Gräf D, Lambert U, et al. Journal of the Electrochemical Society, 1997, 144(4), 1447.
56 Kot D, Kissinger G, Schubert M A, et al. ECS Journal of Solid State Science and Technology, 2017, 6(4), N17.
57 Ji X. Phase field method model and simulation study of oxygen precipitation evolution behavior in monocrystalline silicon wafer. Master’s Thesis, Shandong University, China, 2016 (in Chinese).
姬祥. 单晶硅片中氧沉淀演化行为的相场法模型及其模拟研究. 硕士学位论文, 山东大学, 2016.
58 Yu X, Chen J, Ma X, et al. Materials Science and Engineering: R: Reports, 2013, 74(1-2), 1.
59 Zhao T, Wu D, Lan W, et al. Journal of Applied Physics, 2022, 131(15), 155703.
60 Qin Y Z. Study on defect behavior in irradiated straight-pull monocrystalline silicon. Master’s Thesis, Zhejiang Sci-Tech University, China, 2019 (in Chinese).
秦亚州. 辐照直拉单晶硅中缺陷行为的研究. 硕士学位论文, 浙江理工大学, 2019.
61 Yu X, Yang D, Ma X, et al. Journal of Applied physics, 2002, 92(1), 188.
62 Kajiwara K, Torigoe K, Harada K, et al. Journal of Crystal Growth, 2021, 570, 126236.
63 Scala R, Porrini M, Voronkov V. Journal of Crystal Growth, 2020, 548, 125820.
64 Huang X R, Yang D, Shen Y J, et al. Journal of Semiconductor, 2004(6), 662 (in Chinese).
黄笑容, 杨德仁, 沈益军, 等. 半导体学报, 2004(6), 662.
65 Zeng Y, Chen J, Ma X, et al. Physica B: Condensed Matter, 2009, 404(23-24), 4619.
66 Jia S. Microdefects of boron-doped single crystal silicon and its rapid thermal process behavior research. Master’s Thesis, Zhengzhou University, China, 2019 (in Chinese).
贾栓, 硼掺杂单晶硅微缺陷及其快速热退火行为研究. 硕士学位论文, 郑州大学, 2019.
67 Winter M, Walter D, Bredemeier D, et al. Solar Energy Materials and Solar Cells, 2019, 201, 110060.
68 Schmidt J, Bothe K. Physical Review B, 2004, 69(2), 024107.
69 Xie M, Yu X, Wu Y, et al. Journal of Electronic Materials, 2018, 47, 5092.
70 Voronkov V V, Falster R. Journal of Applied Physics, 2010, 107(5),053509.
71 Kung C Y. Journal of Applied Physics, 1989, 65(12), 4654.
72 Ribeyron P J, Durand F. Journal of Crystal Growth, 2000, 210(4), 541.
73 Song L W, Zhan X D, Benson B W, et al. Physical Review B, 1990, 42(9), 5765.
74 Zhou J W. Effect of carbon impurities on oxygen-related defects in nitrogen-containing straight-pull monocrystalline silicon. Master’s Thesis, Zhejiang University, China, 2017 (in Chinese).
周军委. 碳杂质对含氮直拉单晶硅中氧相关缺陷的影响. 硕士学位论文, 浙江大学, 2017
75 Zhao J. Effect of group Ⅳ element impurities in straight-drawn silicon single crystal. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chesse).
赵剑. 直拉硅单晶中Ⅳ族元素杂质的效应. 博士学位论文, 浙江大学, 2017.
[1] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[2] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[3] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[4] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[7] 张俊杰, 陈燕强, 钱春香. 水泥基材料中Ca2+对矿化微生物的碳酸酐酶产量、活性和矿化的影响[J]. 材料导报, 2024, 38(8): 22030269-6.
[8] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[11] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[12] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[13] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[14] 于锐, 顾龙, 姚存峰, 张璐, 王冠, 郭亮, 吴金德, 姜韦, 李金阳. 加速器驱动次临界系统用嬗变核燃料研究进展分析[J]. 材料导报, 2024, 38(7): 22110316-11.
[15] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed