Research Progress of Crystal Defects During the Growth of Large Size Czochralski Monocrystalline Silicon
ZHOU Xiang1,2, LI Tai1,2, HUANG Zhenling1,2, ZHAO Liang1,2, KANG Jiaming1,2, LI Shaoyuan1,2, RENG Yongsheng1,2, MA Wenhui1,2, LYU Guoqiang1,2,*
1 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Yunnan Silicon Industry Engineering Research Center, Kunming 650093, China
Abstract: Thecarbon emissions of solar photovoltaic power generation account for only 1/20 to 1/10 of traditional fossil energy power generation, which is an inevitable choice and effective way to achieve the carbon peaking and carbon neutrality goals. With the continuous increase of photovoltaic installed capacity and the continuous improvement of solar cell efficiency, photovoltaic and other related industries have put forward higher requirements for the development of monocrystalline silicon wafers towards low cost, large size and high quality. However, the uneven heat and mass transfer and crystal defects caused by the large size of silicon wafers are important factors affecting the electrical properties of silicon wafers. This paper inducts the types and growth mechanism of defects in the growth process of Czochralski single crystal silicon, and summarizes the research status of the formation and influence of nitrogen, phosphorus, boron and carbon doping elements on defects. The interaction of interstitial atoms, vacancies and lattice stress in silicon is studied, and the development direction of crystal defect control technology in the growth process of large-size Czochralski single crystal silicon is prospected.
周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
ZHOU Xiang, LI Tai, HUANG Zhenling, ZHAO Liang, KANG Jiaming, LI Shaoyuan, RENG Yongsheng, MA Wenhui, LYU Guoqiang. Research Progress of Crystal Defects During the Growth of Large Size Czochralski Monocrystalline Silicon. Materials Reports, 2024, 38(24): 23100030-9.
1 He Y P. China Securities Journal, 2022-11-21(A06) (in Chinese). 何昱璞. 中国证券报, 2022-11-21(A06). 2 National Energy Administration. Polaris solar photovoltaic network.https://guangfu.bjx.com.cn/news/20230720/1320599.shtml. 国家能源局. 北极星太阳能光伏网. https://guangfu.bjx.com.cn/news/20230720/1320599.shtml. 3 China Photovoltaic Society. Solar Energy, 2020, 318(10), 5 (in Chinese). 中国可再生能源学会光伏分会. 太阳能, 2020, 381(10), 5. 4 Yang J Z, Shen Y. Materials Reports, 2010, 24(15), 126 (in Chinese). 杨灼坚, 沈辉. 材料导报, 2010, 24(15), 126. 5 Wang S W. Simulating the oxygen cluster’s evolution in silicon wafer treated using rapid thermal processing during low temperature annealing based on phase field method. Master’s Thesis, Shandong University, China, 2019 (in Chinese). 王善文. 低温退火期间快速热处理硅片中氧聚集体演变的相场仿真. 硕士学位论文, 山东大学, 2019. 6 Dornberger E, Temmler D, Von Ammon W. Journal of the Electrochemical Society, 2002, 149(4), G226. 7 Taishi T, Huang X, Yonenaga I, et al. Journal of Crystal Growth, 2005, 275(1-2), e2147. 8 Chao C K, Hung S Y. J Cryst Growth, 2003, 256(1-2), 107. 9 Noghabi O A, Jomâa M, M’hamdi M. Journal of Crystal Growth, 2013, 362, 77. 10 Friedrich J, Jung T, Trempa M, et al. Journal of Crystal Growth, 2019, 524, 125168. 11 Hu G X, Cai X. Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China, 2000, pp.76(in Chinese). 胡赓祥, 蔡珣. 材料科学基础, 上海交通大学出版社. 2000, pp.76. 12 Zhao Z G. Motion of indentation dislocations in Czochralski silicon. Master’s Thesis, Zhejiang University, China, 2015 (in China). 赵泽钢. 直拉硅单晶压痕位错的运动. 硕士学位论文, 浙江大学, 2015. 13 Voronkov V V, Voronkova G I, Veselovskaya N V, et al. Kristallografiya, 1984, 29(6), 1176. 14 Eidenzon A M, Puzanov N I. Kristallografiya, 1985, 30(5), 992. 15 De Kock A J R, Van de Wijgert W M. Journal of Crystal Growth, 1980, 49(4), 718. 16 Kelton K F, Falster R, Gambaro D, et al. Journal of Applied Physics, 1999, 85(12), 8097. 17 Abe T, Harada H, Chikawa J. Physica B+C, 1983, 116(1-3), 139. 18 Puzanov N I, Eidenzon A M. Journal of Crystal Growth, 1997, 178(4), 459. 19 Roksnoer P J, Van Den Boom M M B. Journal of Crystal Growth, 1981, 53(3), 563. 20 Voronkov V V, Falster R. Journal of Crystal Growth, 1998, 194(1), 76. 21 Lee W P, Yow H K, Tou T Y. Journal of the Electrochemical Society, 2006, 153(3), G248. 22 Kato M, Yoshida T, Ikeda Y, et al. Japanese Journal of Applied Physics, 1996, 35(11R), 5597. 23 Fang M, Yang D R, Ma X Y, et al. Journal of Materials Science and Engineering, 2006(2), 212 (in Chinese). 方敏, 杨德仁, 马向阳, 等. 材料科学与工程学报, 2006(2), 212. 24 Yamagishi H, Fusegawa I, Fujimaki N, et al. Semiconductor Science and Technology, 1992, 7(1A), A135. 25 Zhang Y X, Cheng M Q. Journal of Semiconductors, 1992(7), 438(in Chinese). 张一心, 程美乔. 半导体学报, 1992(7), 438. 26 Zhao Q, Xie S, Wang H, et al. ECS Journal of Solid State Science and Technology, 2022, 11(2), 023009. 27 Dash W C. Journal of Applied Physics, 1958, 29(4), 736. 28 Voronkov V V. Journal of Crystal Growth, 1982, 59( 3), 625. 29 Nian X F, Huang J L, Deng K, et al. Chinese Journal of Rare Metals, 2018, 42(6), 634 (in Chinese). 年夫雪, 黄嘉丽, 邓康, 等. 稀有金属, 2018, 42(6), 634. 30 Xu Z H, Li J, He X, et al. Journal of Synthetic Crystals, 2023, 52(4), 562 (in Chinese). 徐尊豪, 李进, 何显, 等. 人工晶体学报, 2023, 52(4), 562. 31 Brown R A, Wang Z, Mori T. Journal of Crystal Growth, 2001, 225(2), 97. 32 Habu R, Yunoki I, Saito T, et al. Japanese Journal of Applied Physics, 1993, 32(4R), 1740. 33 Dornberger E, Von Ammon W, Van den Bogaert N, et al. Journal of crystal growth, 1996, 166(1-4), 452. 34 Sinno T, Brown R A, von Ammon W, et al. Journal of the Electrochemical Society, 1998, 145(1), 302. 35 Nishimoto M, Nakamura K, Hourai M, et al. Journal of the Japan Institute of Metals, 2011, 75(12), 657. 36 Abe T. Journal of Crystal Growth, 2022, 590, 126671. 37 Tiller W A, Friedman M, Shaw R, et al. Journal of Crystal Growth, 1998, 186(1-2), 113. 38 Yu X G, Yang D R, Ma X Y, et al. Journal of Semiconductor Information, 2001, 38(3), 33 (in chinese). 余学功, 杨德仁, 马向阳, 等. 半导体情报, 2001, 38(3), 33. 39 Li Z, Liu Y, Wei T, et al. ECS Journal of Solid State Science and Technology, 2022, 11(2), 024007. 40 Niewelt T, Richter A, Kho T C, et al. Solar Energy Materials and Solar Cells, 2018, 185, 252. 41 Xia Y, Suzuki M, Xue P, et al. International Journal of Fatigue, 2022, 162, 106983. 42 Wan W, Tang C, Qiu A, et al. Materials, 2021, 14(11), 3011. 43 Zhang MY, Li T, Du S L, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(9), 3259. 44 Borghesi A, Pivac B, Sassella A, et al. Journal of Applied Physics, 1995, 77(9), 4169. 45 Cui C. Study on oxygen precipitation and systemic impurities of straight-drawn silicon single crystals. Ph. D. Thesis, Zhejiang University, China, 2006 (in Chinese). 崔灿. 直拉硅单晶的氧沉淀及内吸杂的研究. 博士学位论文, 浙江大学, 2006. 46 Li J Y. Study on oxygen-related defects in straight-drawn silicon for photovoltaics. Master’s Thesis, Zhejiang University, China, 2018 (in Chinese). 李继阳. 光伏用直拉硅中氧相关缺陷的研究. 硕士学位论文, 浙江大学, 2018. 47 Li T. Numerical simulation and experimental study on oxygen impurities and dislocations during the growth process of photovoltaic monocrystalline silicon pull-up. Master’s Thesis, Kunming University of Science and Technology, China, 2022 (in Chinese). 李太. 光伏单晶硅提拉法生长过程氧杂质和位错的数值模拟及实验研究. 硕士学位论文, 昆明理工大学, 2022. 48 Sueoka K, Ikeda N, Yamamoto T Y T, et al. Japanese Journal of Applied Physics, 1994, 33(11A), L1507. 49 Wang H, Yang D, Yu X, et al. Journal of Applied Physics, 2004, 96(5), 3031. 50 Rougieux F E, Nguyen H T, Macdonald D H, et al. IEEE Journal of photovoltaics, 2017, 7(3), 735. 51 Minowa K, Yonenaga I, Sumino K. Materials Letters, 1991, 11(5-7), 164. 52 Sueoka K, Ikeda N, Yamamoto T. Applied Physics Letters, 1994, 65 (13), 1686. 53 Dong P. Study on oxygen-related defects in straight-drawn silicon. Ph. D. Thesis, Zhejiang University, China, 2015 (in Chinese). 董鹏. 直拉硅中氧相关缺陷的研究. 博士学位论文, 浙江大学, 2015. 54 Kissinger G, Grabolla T, Morgenstern G, et al. Journal of the Electrochemical Society, 1999, 146(5), 1971. 55 Kissinger G, Gräf D, Lambert U, et al. Journal of the Electrochemical Society, 1997, 144(4), 1447. 56 Kot D, Kissinger G, Schubert M A, et al. ECS Journal of Solid State Science and Technology, 2017, 6(4), N17. 57 Ji X. Phase field method model and simulation study of oxygen precipitation evolution behavior in monocrystalline silicon wafer. Master’s Thesis, Shandong University, China, 2016 (in Chinese). 姬祥. 单晶硅片中氧沉淀演化行为的相场法模型及其模拟研究. 硕士学位论文, 山东大学, 2016. 58 Yu X, Chen J, Ma X, et al. Materials Science and Engineering: R: Reports, 2013, 74(1-2), 1. 59 Zhao T, Wu D, Lan W, et al. Journal of Applied Physics, 2022, 131(15), 155703. 60 Qin Y Z. Study on defect behavior in irradiated straight-pull monocrystalline silicon. Master’s Thesis, Zhejiang Sci-Tech University, China, 2019 (in Chinese). 秦亚州. 辐照直拉单晶硅中缺陷行为的研究. 硕士学位论文, 浙江理工大学, 2019. 61 Yu X, Yang D, Ma X, et al. Journal of Applied physics, 2002, 92(1), 188. 62 Kajiwara K, Torigoe K, Harada K, et al. Journal of Crystal Growth, 2021, 570, 126236. 63 Scala R, Porrini M, Voronkov V. Journal of Crystal Growth, 2020, 548, 125820. 64 Huang X R, Yang D, Shen Y J, et al. Journal of Semiconductor, 2004(6), 662 (in Chinese). 黄笑容, 杨德仁, 沈益军, 等. 半导体学报, 2004(6), 662. 65 Zeng Y, Chen J, Ma X, et al. Physica B: Condensed Matter, 2009, 404(23-24), 4619. 66 Jia S. Microdefects of boron-doped single crystal silicon and its rapid thermal process behavior research. Master’s Thesis, Zhengzhou University, China, 2019 (in Chinese). 贾栓, 硼掺杂单晶硅微缺陷及其快速热退火行为研究. 硕士学位论文, 郑州大学, 2019. 67 Winter M, Walter D, Bredemeier D, et al. Solar Energy Materials and Solar Cells, 2019, 201, 110060. 68 Schmidt J, Bothe K. Physical Review B, 2004, 69(2), 024107. 69 Xie M, Yu X, Wu Y, et al. Journal of Electronic Materials, 2018, 47, 5092. 70 Voronkov V V, Falster R. Journal of Applied Physics, 2010, 107(5),053509. 71 Kung C Y. Journal of Applied Physics, 1989, 65(12), 4654. 72 Ribeyron P J, Durand F. Journal of Crystal Growth, 2000, 210(4), 541. 73 Song L W, Zhan X D, Benson B W, et al. Physical Review B, 1990, 42(9), 5765. 74 Zhou J W. Effect of carbon impurities on oxygen-related defects in nitrogen-containing straight-pull monocrystalline silicon. Master’s Thesis, Zhejiang University, China, 2017 (in Chinese). 周军委. 碳杂质对含氮直拉单晶硅中氧相关缺陷的影响. 硕士学位论文, 浙江大学, 2017 75 Zhao J. Effect of group Ⅳ element impurities in straight-drawn silicon single crystal. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chesse). 赵剑. 直拉硅单晶中Ⅳ族元素杂质的效应. 博士学位论文, 浙江大学, 2017.