Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100004-13    https://doi.org/10.11896/cldb.23100004
  无机非金属及其复合材料 |
低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展
邢欢欢1,†, 胡萍1,†, 罗政2, 毛丽秋1, 盛丽萍1,*, 王珊珊2,*
1 湖南师范大学化学化工学院,石化新材料与资源精细利用国家地方联合工程实验室,长沙 410081
2 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料国防科技重点实验室,长沙 410073
Research Progress on Chemical Vapor Deposition Synthesis of Two-dimensional Layered Transition Metal Dichalcogenides Alloys and Heterojunctions with Low Symmetry
XING Huanhuan1,†, HU Ping1,†, LUO Zheng2, MAO Liqiu1, SHENG Liping1,*, WANG Shanshan2,*
1 National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
2 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 8208KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低对称性二维过渡金属硫族化合物(TMDs)合金及异质结是一类面外为层状结构、面内对称元素少的功能纳米材料。它不仅表现出丰富可调的电子能带结构,且在光学、电学、力学等方面显示出独特的各向异性物理特性,因而在偏振光探测器、各向异性逻辑电路、触觉传感器等领域具有广阔应用前景。低对称性二维TMDs合金及异质结的可控制备是发挥其优异性能、保障其潜在应用的前提。本文首先按照元素种类的不同从二维铼(Re)基低对称合金和二维碲(Te)基低对称合金两方面对低对称性二维TMDs合金的化学气相沉积法制备进行归纳。然后,按照异质结构的不同从垂直异质结和水平异质结两方面梳理了低对称性二维TMDs异质结制备的最新进展。最后,对该领域现阶段存在的问题及挑战进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢欢欢
胡萍
罗政
毛丽秋
盛丽萍
王珊珊
关键词:  低对称性  二维  合金  异质结  化学气相沉积法    
Abstract: Two-dimensional (2D) transition metal chalcogenide (TMDs) alloys and heterojunctions with low symmetry are a class of functional nanomaterials with layered structure outside the plane and few symmetrical elements inside the plane. It not only shows rich adjustable electronic band structure, but also shows unique anisotropic physical properties in optics, electricity, mechanics, etc. so it has broad application prospects in the fields of polarized light detector, anisotropic logic circuit, tactile sensor and so on. The controllable preparation of low symmetry 2D TMDs alloys and heterojunctions is a prerequisite for their excellent properties. In this work, according to the different types of elements, the chemical vapor deposition of two-dimensional rhenium (Re)-base low-symmetry alloys and two-dimensional tellurium (Te) -base low-symmetry alloys is summarized. Then, according to the difference of heterostructures, the latest progress in the preparation of low symmetry two-dimensional TMDs heterojunctions is reviewed from the aspects of vertical heterojunctions and horizontal heterojunctions. Finally, the problems and challenges in this field are summarized and prospected.
Key words:  low symmetry    two-dimensional    alloy    heterojunctions    chemical vapor deposition
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52172032;52222201); 中国科协青年科技精英资助计划 (YESS20200222); 湖南省自然科学基金(2022JJ20044); 国家国防科技工业局(WDZC20195500503); 国防科技大学(ZK18-01-03)
通讯作者:  * 盛丽萍,湖南师范大学化工学院副教授,博士生和硕士研究生导师。本硕博先后就读于湖南师范大学、中南大学、国防科技大学。主讲课程为《结构化学》《化学综合实验》。目前研究方向为耐高温和疏水高分子复合材料。主持过国家自科、省重点研发计划、省自科、军口横向、地方企业项目等,参与其他项目多项。已发表SCI论文30余篇,申请及授权专利共8项。 sleeping1217@126.com;王珊珊,国防科技大学副研究员。牛津大学材料学博士(师从Jamie Warner教授),北京大学化学博士后(师从张锦教授)。致力于低维功能材料的原子级结构与性质研究。以第一/通信作者在Chemical Society Reviews、Chem、Matter、ACS Nano(9篇)、Small等期刊发表论文20余篇。获国家优秀青年科学基金、湖南省优秀青年科学基金、欧洲显微学大会“青年科学家”奖,入选中国科协“青年人才托举”工程。 wangshanshan08@nudt.edu.cn   
作者简介:  邢欢欢,2021年6月在郑州师范学院获得工学学士学位,现为湖南师范大学化学化工学院硕士研究生(国防科技大学联合培养),在王珊珊老师的指导下,硕士期间主要研究低对称性二维硒化铼的化学气相沉积法制备及形貌调控。胡萍,2020年6月和2023年6月于上饶师范学院和湖南师范大学获获得理学学士学位和理学硕士学位,现为中国电子科技集团有限公司研发工程师。硕士期间于国防科技大学进行联合培养,在王珊珊老师的指导下主要研究低对称性二维硫化铼及其异质结的化学气相沉积法制备;以第一作者在Advanced Functional Materials期刊发表论文1篇,授权专利1项。
†共同第一作者
引用本文:    
邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
XING Huanhuan, HU Ping, LUO Zheng, MAO Liqiu, SHENG Liping, WANG Shanshan. Research Progress on Chemical Vapor Deposition Synthesis of Two-dimensional Layered Transition Metal Dichalcogenides Alloys and Heterojunctions with Low Symmetry. Materials Reports, 2024, 38(24): 23100004-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100004  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100004
1 Li X, Yu J G, Wageh S, et al. Small, 2016, 12(48), 6640.
2 Li J, Zhao B, Chen P, et al. Advanced Materials, 2018, 30(36), 1801043.
3 Lu A Y, Zhu H Y, Xiao J, et al. Nature Nanotechnology, 2017, 12(8), 744.
4 Liu Y W, Li J, Huang W T, et al. ACS Applied Materials and Interfaces, 2020, 12(30), 33586.
5 Long M S, Wang P, Fang H H, et al. Advanced Functional Materials, 2019, 29(19), 1803807.
6 Dong Y F, Wu Z S, Ren W C, et al. Science Bulletin, 2017, 62(10), 724.
7 Singh A K, Kumbhaker P, Krishnamoorth A, et al. iScience, 2021, 24(12), 103532.
8 Gong Y J, Liu Z, LupinA R, et al. Nano Letters, 2013, 14(2), 442.
9 Chen F, Ding S, Su W T. Journal of Alloys and Compounds, 2019, 784, 213.
10 Tongay S, Narang D S, Kang J, et al. Applied Physics Letters, 2014, 104(1), 012101.
11 Zuo Y G, Liu C, L Ding L P, et al. Nature Communications, 2022, 13, 1007.
12 Zheng W H, Zheng B Y, Jiang Y, et al. Nano Letters, 2019, 19(10), 7217.
13 Xu X D, Yao W, Xiao D, et al. Nature Physics, 2014, 10, 343.
14 Xie S E, Tu L J, Han Y M, et al. Science, 2018, 359(6380), 1131.
15 Zhong D, Seyle K L, Linpen X Y, et al. Nature Nanotechnology, 2020, 15, 187.
16 Zhang J, Wang J H, Chen P, et al. Advanced Materials, 2016, 28(10), 1950.
17 Klee V, Preciado E, Barroso D, et al. Nano Letters, 2015, 15(4), 2612.
18 Li X B, Wang X, Hong J H, et al. Advanced Functional Materials, 2019, 29(49), 1906385.
19 Pace S, Martin L, Convertio D, et al. ACS Nano, 2021, 15(3), 4213.
20 Zhou Y. Material analysis method, China Machine Press, China, 2011, pp.18 (in Chinese).
周玉. 材料分析方法, 机械工业出版社. 2011, pp.18.
21 Hafee M, Gan L, Li H Q, et al. Advanced Materials, 2016, 28(37), 8296.
22 An C H, Xu Z H, Shen W F, et al. ACS Nano, 2019, 13(3), 3310.
23 Liu F C, Zheng S J, He X X, et al. Advanced Functional Materials, 2015, 26(8), 1169.
24 Tang Y X, Hao H, Kang Y, et al. ACS Applied Materials and Interfaces, 2020, 12(47), 53475.
25 Deng Y, Li P L, Zhu C, et al. ACS Nano, 2021, 15(7), 11526.
26 Ghetiya A, Chaki S H, Tailor J P, et al. Journal of Materials Science: Materials in Electronics, 2023, 34, 122.
27 Ho C H, Liu Z Z, Lin M H. Nanotechnology, 2017, 28, 235203.
28 Yu P, Lin J H, Sun L F, et al. Advanced Materials, 2017, 29(4), 1603991.
29 Barton A T, Yue R Y, Walsh L A. 2D Materials, 2019, 6, 045027.
30 Cui F F, Feng Q L, Hong J H, et al. Advanced Materials, 2017, 29(46), 1705015.
31 Hu P, Zhang H, Li A L, et al. Advanced Functional Materials, 2023, 33(13), 2210502.
32 Deng Y, Li P L, Zhu C, et al. ACS Nano, 2021, 15(7), 11526.
33 Ahn J, Ko K, Kyhm J H, et al. ACS Nano, 2021, 15, 17917.
34 Sun L J, Ding M, Li J, et al. Applied Surface Science, 2019, 496(1), 143687.
35 Momma K, Izumi F. Journal of Applied Crystallography, 2011, 44, 1272.
36 Li X B, Chen C, Yang Y, et al. Advanced Science, 2020, 7(23), 2002320.
37 Keum D H, Cho S, Kim J H, et al. Nature Physics, 2015, 11, 482.
38 Sun X N, Liu Y, Shi J W, et al. Advanced Materials, 2023, 35(38), 2304171.
39 He Q M, Zhou J P, Tang W Q, et al. ACS Applied Materials and Interfaces, 2020, 12(2), 2862.
40 Wang Z, Sun J, Wang H L, et al. Applied Surface Science, 2019, 504(28), 144371.
41 Kang P P, Nan H Y, Zhang X M, et al. Advanced Optical Materials, 2020, 8(4), 1901415.
42 Deng Q, Li X, Si H, et al. Advanced Functional Materials, 2020, 30(34), 2003264.
43 Wang Z X, Zhao X X, Y Yang Y K, et al. Small, 2020, 16(20), 2000852.
44 Liu S J, Zou Y C, Shi X L, et al. Journal of Alloys and Compounds, 2018, 777(10), 926.
45 Liu S J, Qiu H P, Liu S H, et al. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012149.
46 Puurunen R L, Vandervors W. Journal of Applied Physics, 2004, 96(12), 7686.
47 Mathe R J, Lee C P, Tseng C A, et al. ACS Applied Materials and Interfaces, 2020, 12(31), 34815.
48 Tang B J, Zhou J D, Sun P P, et al. Advanced Materials, 2019, 31(23), 1900862.
49 Zhang C X, Kc S, Nie Y F, et al. ACS Nano, 2016, 10(8), 7370.
50 Zeng Y, Wu S Q, Xu X L, et al. ACS Materials Letters, 2023, 5, 2324.
51 Wang J W, Li Z Q, Chen H Y, et al. Nano-Micro Letters, 2019, 11, 48.
52 Gong Y J, Lin J H, Wang X G, et al. Nature Materials, 2014, 13, 1135.
53 Kim M S, Seo C, Kim H, et al. ACS Nano, 2016, 10(6), 6211.
54 Chiu M H, Zhang C D, Shiu H W, et al. Nature Communications, 2015, 6, 7666.
55 Long R, Prezhdo O V. Nano Letters, 2016, 16(3), 1996.
56 Liu D Y, Hong J H, Wang X, et al. Advanced Functional Materials, 2018, 28(47), 1804696.
57 Zhang T, Jiang B, Xu Z, et al. Nature Communications, 2016, 7, 13911.
58 Bai H F, Xu L C, Di M Y, et al. Journal of Applied Physics, 2018, 123(9), 095104.
59 Liu S Q, Li J, Shi B, et al. Journal of Materials Chemistry C, 2018, 6(21), 5651.
60 Fan Z Q, Jiang X W, Luo J W, et al. Physical Review B, 2017, 96, 165402.
61 Ma Y, Xu S, Wei J, et al. Oxford Open Materials Science, 2020, 1(1), itab016.
62 Yao J H, Liu H Y, He Q M, et al. Applied Surface Science, 2022, 572, 151438.
63 Polumati G, Martínez B A M, Kolli C S R, et al. 2D Materials, 2023, 10, 045032.
64 Huang H Y, Zhao G J, Xing S A, et al. Physics Letters A, 2022, 445, 128241.
65 Guo Z, Wang L, Han M J, et al. ACS Nano, 2022, 16(7), 11268.
66 Yang S Q, Xu X L, Xu W J, et al. ACS Applied Nano Materials, 2020, 3, 10411.
67 Seyler K L, Rivera P, Yu H, et al. Nature, 2019, 567 (7746), 66.
68 Jin C, Regan E C, Yan A, et al. Nature, 2019, 569 (7757), 76.
69 Cao Y, Fatemi V, Fang S, et al. Nature, 2018, 556, 43.
70 Sharpe A L, Foxe E J, Barnard A W, et al. Science, 2019, 365(6453), 605.
71 Zheng H H, Guo H L, Chen S L, et al. Advanced Materials, 2023, 35(16), 10909.
72 Xie X, Ding J N, Wu Biao, et al. Nano Letters, 2023, 23(19), 8833.
73 He H R, Zheng H H, Wu B, et al. Nano Research, DOI:10. 1007/s12274-023-6205-x.
74 Zheng H H, Wu W, Li S F, et al. Light Science Applications, 2023, 12, 117.
75 Ge M, Wang H, Wu J Z, et al. npj Computational Materials, 2022, 8, 32.
76 Zhu L H, Wang H N, Yang L. npj Computational Materials, 2023, 9, 8.
77 Sun X N, Liu Y, Shi J W, et al. Advanced Materials, 2023, 35(38), 2304171.
78 Chen B, Wu K, Susl A, et al. Advanced Materials, 2017, 29(34), 1701201.
79 Apte A, Krishnamoorthy A, Hachte J A, et al. Nano Letters, 2019, 19(9), 6338.
80 Liu D Y, Hong J H, Li X B, et al. Advanced Functional Materials, 2020, 30(16), 1910169.
81 Sung J H, Heo H, Si S, et al. Nature Nanotechnology, 2017, 12, 1064.
82 Cheng S, Yang L, Li J, et al. CrystEngComm, 2017, 19(7), 1045.
83 Zhang X, Jin Z H, Wang L Q, et al. ACS Applied Materials and Interfaces, 2019, 11(13), 12777.
84 Lu D L, Li Z Q, Xu C S, et al. Nano Research, 2021, 14, 1311.
85 Yoo Y, Degrgori Z P, Su Y, et al. Advanced Materials, 2017, 29(16), 1605461.
86 Ma R, Zhang H, Yoo Y, et al. ACS Nano, 2019, 13(7), 8035.
87 Naylo C H, Parkin W M, Gao Z, et al. ACS Nano, 2017, 11(9), 8619.
88 Sim Y, Yoon A, Kang H S, et al. Advanced Functional Materials, 2020, 31(9), 2005449.
89 Liu C, Li Z H, Qiao R X, et al. Nature Materials, 2022, 21, 1263.
90 Wang Z J, Kong X, Huang Y, et al. Nature Materials, DOI:10. 1038/s41563-023-01632-y.
91 Zhang Z W, Huang Z W, Li J, et al. Nature Nanotechnology, 2022, 17(5), 493.
[1] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[2] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[3] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[11] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed