Research Progress on Chemical Vapor Deposition Synthesis of Two-dimensional Layered Transition Metal Dichalcogenides Alloys and Heterojunctions with Low Symmetry
XING Huanhuan1,†, HU Ping1,†, LUO Zheng2, MAO Liqiu1, SHENG Liping1,*, WANG Shanshan2,*
1 National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China 2 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract: Two-dimensional (2D) transition metal chalcogenide (TMDs) alloys and heterojunctions with low symmetry are a class of functional nanomaterials with layered structure outside the plane and few symmetrical elements inside the plane. It not only shows rich adjustable electronic band structure, but also shows unique anisotropic physical properties in optics, electricity, mechanics, etc. so it has broad application prospects in the fields of polarized light detector, anisotropic logic circuit, tactile sensor and so on. The controllable preparation of low symmetry 2D TMDs alloys and heterojunctions is a prerequisite for their excellent properties. In this work, according to the different types of elements, the chemical vapor deposition of two-dimensional rhenium (Re)-base low-symmetry alloys and two-dimensional tellurium (Te) -base low-symmetry alloys is summarized. Then, according to the difference of heterostructures, the latest progress in the preparation of low symmetry two-dimensional TMDs heterojunctions is reviewed from the aspects of vertical heterojunctions and horizontal heterojunctions. Finally, the problems and challenges in this field are summarized and prospected.
邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
XING Huanhuan, HU Ping, LUO Zheng, MAO Liqiu, SHENG Liping, WANG Shanshan. Research Progress on Chemical Vapor Deposition Synthesis of Two-dimensional Layered Transition Metal Dichalcogenides Alloys and Heterojunctions with Low Symmetry. Materials Reports, 2024, 38(24): 23100004-13.
1 Li X, Yu J G, Wageh S, et al. Small, 2016, 12(48), 6640. 2 Li J, Zhao B, Chen P, et al. Advanced Materials, 2018, 30(36), 1801043. 3 Lu A Y, Zhu H Y, Xiao J, et al. Nature Nanotechnology, 2017, 12(8), 744. 4 Liu Y W, Li J, Huang W T, et al. ACS Applied Materials and Interfaces, 2020, 12(30), 33586. 5 Long M S, Wang P, Fang H H, et al. Advanced Functional Materials, 2019, 29(19), 1803807. 6 Dong Y F, Wu Z S, Ren W C, et al. Science Bulletin, 2017, 62(10), 724. 7 Singh A K, Kumbhaker P, Krishnamoorth A, et al. iScience, 2021, 24(12), 103532. 8 Gong Y J, Liu Z, LupinA R, et al. Nano Letters, 2013, 14(2), 442. 9 Chen F, Ding S, Su W T. Journal of Alloys and Compounds, 2019, 784, 213. 10 Tongay S, Narang D S, Kang J, et al. Applied Physics Letters, 2014, 104(1), 012101. 11 Zuo Y G, Liu C, L Ding L P, et al. Nature Communications, 2022, 13, 1007. 12 Zheng W H, Zheng B Y, Jiang Y, et al. Nano Letters, 2019, 19(10), 7217. 13 Xu X D, Yao W, Xiao D, et al. Nature Physics, 2014, 10, 343. 14 Xie S E, Tu L J, Han Y M, et al. Science, 2018, 359(6380), 1131. 15 Zhong D, Seyle K L, Linpen X Y, et al. Nature Nanotechnology, 2020, 15, 187. 16 Zhang J, Wang J H, Chen P, et al. Advanced Materials, 2016, 28(10), 1950. 17 Klee V, Preciado E, Barroso D, et al. Nano Letters, 2015, 15(4), 2612. 18 Li X B, Wang X, Hong J H, et al. Advanced Functional Materials, 2019, 29(49), 1906385. 19 Pace S, Martin L, Convertio D, et al. ACS Nano, 2021, 15(3), 4213. 20 Zhou Y. Material analysis method, China Machine Press, China, 2011, pp.18 (in Chinese). 周玉. 材料分析方法, 机械工业出版社. 2011, pp.18. 21 Hafee M, Gan L, Li H Q, et al. Advanced Materials, 2016, 28(37), 8296. 22 An C H, Xu Z H, Shen W F, et al. ACS Nano, 2019, 13(3), 3310. 23 Liu F C, Zheng S J, He X X, et al. Advanced Functional Materials, 2015, 26(8), 1169. 24 Tang Y X, Hao H, Kang Y, et al. ACS Applied Materials and Interfaces, 2020, 12(47), 53475. 25 Deng Y, Li P L, Zhu C, et al. ACS Nano, 2021, 15(7), 11526. 26 Ghetiya A, Chaki S H, Tailor J P, et al. Journal of Materials Science: Materials in Electronics, 2023, 34, 122. 27 Ho C H, Liu Z Z, Lin M H. Nanotechnology, 2017, 28, 235203. 28 Yu P, Lin J H, Sun L F, et al. Advanced Materials, 2017, 29(4), 1603991. 29 Barton A T, Yue R Y, Walsh L A. 2D Materials, 2019, 6, 045027. 30 Cui F F, Feng Q L, Hong J H, et al. Advanced Materials, 2017, 29(46), 1705015. 31 Hu P, Zhang H, Li A L, et al. Advanced Functional Materials, 2023, 33(13), 2210502. 32 Deng Y, Li P L, Zhu C, et al. ACS Nano, 2021, 15(7), 11526. 33 Ahn J, Ko K, Kyhm J H, et al. ACS Nano, 2021, 15, 17917. 34 Sun L J, Ding M, Li J, et al. Applied Surface Science, 2019, 496(1), 143687. 35 Momma K, Izumi F. Journal of Applied Crystallography, 2011, 44, 1272. 36 Li X B, Chen C, Yang Y, et al. Advanced Science, 2020, 7(23), 2002320. 37 Keum D H, Cho S, Kim J H, et al. Nature Physics, 2015, 11, 482. 38 Sun X N, Liu Y, Shi J W, et al. Advanced Materials, 2023, 35(38), 2304171. 39 He Q M, Zhou J P, Tang W Q, et al. ACS Applied Materials and Interfaces, 2020, 12(2), 2862. 40 Wang Z, Sun J, Wang H L, et al. Applied Surface Science, 2019, 504(28), 144371. 41 Kang P P, Nan H Y, Zhang X M, et al. Advanced Optical Materials, 2020, 8(4), 1901415. 42 Deng Q, Li X, Si H, et al. Advanced Functional Materials, 2020, 30(34), 2003264. 43 Wang Z X, Zhao X X, Y Yang Y K, et al. Small, 2020, 16(20), 2000852. 44 Liu S J, Zou Y C, Shi X L, et al. Journal of Alloys and Compounds, 2018, 777(10), 926. 45 Liu S J, Qiu H P, Liu S H, et al. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012149. 46 Puurunen R L, Vandervors W. Journal of Applied Physics, 2004, 96(12), 7686. 47 Mathe R J, Lee C P, Tseng C A, et al. ACS Applied Materials and Interfaces, 2020, 12(31), 34815. 48 Tang B J, Zhou J D, Sun P P, et al. Advanced Materials, 2019, 31(23), 1900862. 49 Zhang C X, Kc S, Nie Y F, et al. ACS Nano, 2016, 10(8), 7370. 50 Zeng Y, Wu S Q, Xu X L, et al. ACS Materials Letters, 2023, 5, 2324. 51 Wang J W, Li Z Q, Chen H Y, et al. Nano-Micro Letters, 2019, 11, 48. 52 Gong Y J, Lin J H, Wang X G, et al. Nature Materials, 2014, 13, 1135. 53 Kim M S, Seo C, Kim H, et al. ACS Nano, 2016, 10(6), 6211. 54 Chiu M H, Zhang C D, Shiu H W, et al. Nature Communications, 2015, 6, 7666. 55 Long R, Prezhdo O V. Nano Letters, 2016, 16(3), 1996. 56 Liu D Y, Hong J H, Wang X, et al. Advanced Functional Materials, 2018, 28(47), 1804696. 57 Zhang T, Jiang B, Xu Z, et al. Nature Communications, 2016, 7, 13911. 58 Bai H F, Xu L C, Di M Y, et al. Journal of Applied Physics, 2018, 123(9), 095104. 59 Liu S Q, Li J, Shi B, et al. Journal of Materials Chemistry C, 2018, 6(21), 5651. 60 Fan Z Q, Jiang X W, Luo J W, et al. Physical Review B, 2017, 96, 165402. 61 Ma Y, Xu S, Wei J, et al. Oxford Open Materials Science, 2020, 1(1), itab016. 62 Yao J H, Liu H Y, He Q M, et al. Applied Surface Science, 2022, 572, 151438. 63 Polumati G, Martínez B A M, Kolli C S R, et al. 2D Materials, 2023, 10, 045032. 64 Huang H Y, Zhao G J, Xing S A, et al. Physics Letters A, 2022, 445, 128241. 65 Guo Z, Wang L, Han M J, et al. ACS Nano, 2022, 16(7), 11268. 66 Yang S Q, Xu X L, Xu W J, et al. ACS Applied Nano Materials, 2020, 3, 10411. 67 Seyler K L, Rivera P, Yu H, et al. Nature, 2019, 567 (7746), 66. 68 Jin C, Regan E C, Yan A, et al. Nature, 2019, 569 (7757), 76. 69 Cao Y, Fatemi V, Fang S, et al. Nature, 2018, 556, 43. 70 Sharpe A L, Foxe E J, Barnard A W, et al. Science, 2019, 365(6453), 605. 71 Zheng H H, Guo H L, Chen S L, et al. Advanced Materials, 2023, 35(16), 10909. 72 Xie X, Ding J N, Wu Biao, et al. Nano Letters, 2023, 23(19), 8833. 73 He H R, Zheng H H, Wu B, et al. Nano Research, DOI:10. 1007/s12274-023-6205-x. 74 Zheng H H, Wu W, Li S F, et al. Light Science Applications, 2023, 12, 117. 75 Ge M, Wang H, Wu J Z, et al. npj Computational Materials, 2022, 8, 32. 76 Zhu L H, Wang H N, Yang L. npj Computational Materials, 2023, 9, 8. 77 Sun X N, Liu Y, Shi J W, et al. Advanced Materials, 2023, 35(38), 2304171. 78 Chen B, Wu K, Susl A, et al. Advanced Materials, 2017, 29(34), 1701201. 79 Apte A, Krishnamoorthy A, Hachte J A, et al. Nano Letters, 2019, 19(9), 6338. 80 Liu D Y, Hong J H, Li X B, et al. Advanced Functional Materials, 2020, 30(16), 1910169. 81 Sung J H, Heo H, Si S, et al. Nature Nanotechnology, 2017, 12, 1064. 82 Cheng S, Yang L, Li J, et al. CrystEngComm, 2017, 19(7), 1045. 83 Zhang X, Jin Z H, Wang L Q, et al. ACS Applied Materials and Interfaces, 2019, 11(13), 12777. 84 Lu D L, Li Z Q, Xu C S, et al. Nano Research, 2021, 14, 1311. 85 Yoo Y, Degrgori Z P, Su Y, et al. Advanced Materials, 2017, 29(16), 1605461. 86 Ma R, Zhang H, Yoo Y, et al. ACS Nano, 2019, 13(7), 8035. 87 Naylo C H, Parkin W M, Gao Z, et al. ACS Nano, 2017, 11(9), 8619. 88 Sim Y, Yoon A, Kang H S, et al. Advanced Functional Materials, 2020, 31(9), 2005449. 89 Liu C, Li Z H, Qiao R X, et al. Nature Materials, 2022, 21, 1263. 90 Wang Z J, Kong X, Huang Y, et al. Nature Materials, DOI:10. 1038/s41563-023-01632-y. 91 Zhang Z W, Huang Z W, Li J, et al. Nature Nanotechnology, 2022, 17(5), 493.