Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080207-9    https://doi.org/10.11896/cldb.22080207
  金属与金属基复合材料 |
高强韧钢淬火-配分工艺中碳配分计算模型的研究进展
刘杨, 王刚*, 王岭*, 齐鹏远, 杨健, 王博全, 郑伟
营口理工学院材料科学与工程学院,辽宁 营口 115014
Research Progress of Calculation Models for Carbon Partitioning During Quenching-Partitioning Process in High Strength and Toughness Steel
LIU Yang, WANG Gang*, WANG Ling*, QI Pengyuan, YANG Jian, WANG Boquan, ZHENG Wei
School of Materials Science and Engineering, Yingkou Institute of Technology, Yingkou 115014, Liaoning, China
下载:  全 文 ( PDF ) ( 27008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 淬火-配分(QP)钢作为第三代先进高强钢,为汽车轻量化、能源使用效率提升及更早地实现“碳达峰、碳中和”的目标提供了重要保障。在淬火-配分(QP)工艺中,淬火过程形成初始组织(残余奥氏体+马氏体),配分过程则是保留和稳定残余奥氏体的关键环节。QP钢配分时除了会发生碳配分,还常常伴有置换原子短程扩散、奥氏体/马氏体界面迁移、奥氏体/马氏体间相变、奥氏体/贝氏体间相变及碳化物析出等现象,使得对配分过程组织演化和碳浓度分布的研究变得十分困难。国内外学者以相关实验为基础,针对具体配分过程提出了许多计算模型,以达到对最终组织相组成的准确预测,并揭示配分过程中多现象同时发生的潜在机制。本文从以下两方面对QP钢碳配分过程的计算模型进行了综述:(1) 基于热力学和动力学建立的计算模型,主要包括理想化的CCE模型、考虑界面移动性的QP-PE模型和QP-LE模型、考虑碳化物析出的CCEθ模型和QPT-LE模型、考虑贝氏体相变的耦合模型以及考虑多现象同时发生的耦合模型;(2) 利用相场手段进行的相关计算模拟。最后,对今后碳配分过程的模拟计算研究前景做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘杨
王刚
王岭
齐鹏远
杨健
王博全
郑伟
关键词:  先进钢  淬火-配分  碳配分  强韧性  计算模型    
Abstract: Quenching-partitioning(QP) steel, as the typical representative of the third generation of advanced high strength steel, provides an important guarantee for automotive lightweight, improving energy efficiency and realizing carbon peak and carbon neutralization. In quenching-partitioning (QP) process, the initial microstructure (residual austenite+martensite) is formed during quenching, and the partitioning process is the key to retaining and stabilizing the residual austenite. In addition to carbon partitioning there are often some phenomena such as short-range diffusion of substitutional atoms, austenite/martensite interface migration, austenite/martensite transformation, austenite/bainite transformation and carbide precipitation occurring in the partitioning process of QP steel, which make it difficult to study the microstructure evolution and the carbon concentration distribution. On the basis of corresponding experiments, many calculation models have been put forward to explore the underlying mechanism of complex phenomena in the specific partitioning process. In this paper, the calculation models of carbon partitioning process in QP steel are reviewed from the following two perspectives: (1) the calculation models that are based on thermodynamics and dynamics, including the ideal CCE model, QP-PE model and QP-LE model with considering interface mobility, CCEθ model and QPT-LE model with considering carbide precipitation, the coupling model with considering bainite transformation and the coupling model with considering the simultaneous occurrence of multiple phenomena; (2) the adoption of phase field method to performing relevant calculation simulation. Finally, future research prospects for the calculation model for carbon partitioning are discussed.
Key words:  advanced steel    QP    carbon partition    strength and toughness    calculation model
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TG142.1  
基金资助: 辽宁省自然基金区域创新联合基金计划(2020-YKLH-26;2021-YKLH-01)
通讯作者:  *王刚,营口理工学院材料科学与工程学院副院长,博士,教授,硕士研究生导师。辽宁省“百千万人才工程”千人层次人才,“营口英才”计划领军人才。主要从事先进金属材料制造和加工基础理论和应用研究。目前重点从事泡沫铝复合材料、先进高强钢、钛铝合金和生物医用钛合金的制备、加工和应用等方面的研究工作。已在Mate-rials Science and Engineering A、Journal of Materials Science、Journal of Materials Science and Technology等国内外学术期刊上发表论文 30 余篇,出版学术专著1部。33171733@qq.com
王岭,博士,副教授,硕士研究生导师。辽宁省“百千万人才工程” 万人层次人才,营口英才,全国材料与器件科学家智库轻合金材料专家委员会委员。从事变形镁合金变形工艺开发和微观组织调控相关研究,发表SCI收录学术论文20余篇,获得辽宁省自然科学学术成果奖三等奖、辽宁省出入境检验检疫局“科技兴检奖”二等奖、营口市自然科学学术成果奖一等奖、二等奖、三等奖。在Journal of Materials Science and Technology、Mate-rials Science and Engineering A等期刊发表SCI收录论文20余篇。30732029@qq.com   
作者简介:  刘杨,硕士,实验师,目前就职于营口理工学院材料科学与工程学院。共发表论文7篇,其中SCI论文2篇,中文核心期刊论文1篇,EI会议论文2篇,获得实用新型专利1项。
引用本文:    
刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
LIU Yang, WANG Gang, WANG Ling, QI Pengyuan, YANG Jian, WANG Boquan, ZHENG Wei. Research Progress of Calculation Models for Carbon Partitioning During Quenching-Partitioning Process in High Strength and Toughness Steel. Materials Reports, 2024, 38(8): 22080207-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080207  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080207
1 Hosseini N, Forouzan F, Vuorinen E. Materials Today Communications, 2022, 31, 103503.
2 Li W, Gia X Q, Jin X J. Acta Metallurgica Sinica, 2022, 58(4), 444(in Chinese).
李伟, 贾兴祺, 金学军. 金属学报, 2022, 58(4), 444.
3 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 21070186(in Chinese).
程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 21070186.
4 Ma T M, Yi H L, Lu H Z, et al. Strategic Study of CAE, 2009, 11(9), 20(in Chinese).
马图鸣, 易红亮, 路洪洲, 等. 中国工程科学, 2009, 11(9), 20.
5 Pierce D T, Coughlin D R, Clarke K D, et al. Acta Materialia, 2018, 151, 454.
6 Seo E J, Cho L, De Cooman B C, et al. Acta Materialia, 2016, 107, 354.
7 Seo E J, Cho L, Estrin Y, et al. Acta Materialia, 2016, 113, 124.
8 Allain S Y P, Geandier G, Hell J C, et al. Scripta Materialia, 2017, 131, 15.
9 Bleck W G, Guo X F, Ma Y. Steel Research International, 2017, 8(10), 1700218.
10 Liu L, He B B, Huang M X. Advanced Engineering Materials, 2018, 20(6), 1701083.
11 Kim B, Sietsma J, Santofimia M J. Materials & Design, 2017, 127, 336.
12 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering: A, 2020, 795, 140023.
13 Edmond D V, He K, Rizzo F C, et al. Materials Science and Enginee-ring: A, 2006, 438-440, 25.
14 Speer J G, Edmonds D V, Rizzo F C, et al. Current Opinion in Solid State and Materials Science, 2004, 8(3-4), 219.
15 Koistinen D P, Marburger R E. Acta Metallurgica, 1959, 7(1), 59.
16 Hultgren A. ASM Transactions, 1947, 39, 915.
17 Hultgren A. Jernkontorets Annaler, 1951, 135, 403.
18 Kozeschnik E, Vitek J M. Calphad, 2000, 24(4), 495.
19 Speer J G, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611.
20 Clarke A J, Speer J G, Matlock D K, et al. Scripta Materialia, 2009, 61(2), 149.
21 Behera A K, Olson G B. Scripta Materialia, 2018, 147, 6.
22 Behera A K, Olson G B. The Journal of the Minerals, Metals & Materials Society, 2019, 71, 1375.
23 Santofimia M J, Zhao L, Sietsma J. Scripta Materialia, 2008, 59(2), 159.
24 Santofimia M J, Speer J G, Clarke A J, et al. Acta Materialia, 2009, 57(15), 4548.
25 Purdy G, Ågren J, Borgenstam A, et al. Metallurgical and Materials Transactions A, 2011, 42A(12), 3703.
26 Toji Y, Matsuda H, Herbig M, et al. Acta Materialia, 2014, 65, 215.
27 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 144, 666.
28 Dai Z B, Wang X, He J G, et al. Metallurgical and Materials Transactions A, 2017, 48A(7), 3168.
29 Dai Z B, Yang Z G, Zhang C, et al. Acta Materialia, 2020, 200, 597.
30 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 152, 288.
31 Toji Y, Miyamoto G, Rabbe D. Acta Materialia, 2015, 86, 137.
32 Hsu T Y, Xu Z Y. Materials Science Forum, 2007, 561-565, 2283.
33 Hsu T Y. International Heat Treatment and Surface Engineering, 2008, 2, 64.
34 Hsu T Y, Jin X J. Advanced steels, Springer, Berlin, Heidelberg, 2011, pp.67.
35 Hsu T Y, Jin X J, Rong Y H. Journal of Alloys and Compounds, 2013, 577(S1), S568.
36 Zhang J Z, Dai Z B, Zeng L Y, et al. Acta Materialia, 2021, 217, 117176.
37 Li Y, Chen S, Wang C C, et al. Acta Materialia, 2020, 188, 528.
38 Nishikawa A S, Santofimia M J, Sietsma J, et al. Acta Materialia, 2018, 142, 142.
39 Pohjonen A, Bahu S R, Visuri V V. Computational Materials Science, 2022, 209, 111413.
40 Takahama Y, Santofimia M, Mecozzi M G, et al. Acta Materialia, 2012, 60(6-7), 2916.
41 Mecozzi M G, Eiken J, Santofimia M J, et al. Computational Materials Science, 2016, 112, 245.
[1] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[2] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[3] 陈今良, 冯中学, 易健宏. CrCoNi中熵合金变形中位错与孪晶协调变形机制[J]. 材料导报, 2022, 36(14): 20090129-6.
[4] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[5] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 退火工艺对冷轧中锰中铝低密度钢组织与性能的影响[J]. 材料导报, 2021, 35(16): 16099-16103.
[6] 李炎铮, 云晓雪, 赖承班, 何昌林, 闵永安. 添加1%Mo提高针阀体用钢18Cr2Ni2的强韧性[J]. 材料导报, 2021, 35(12): 12130-12135.
[7] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[8] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[9] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed