Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22100300-13    https://doi.org/10.11896/cldb.22100300
  金属与金属基复合材料 |
纳米压痕法测量航空发动机关键材料残余应力的研究进展
罗军1,2,3,4, 李楠1,2,3,4, 王曦1,2,3,4, 刘昌奎1,2,3,4,*
1 中国航发北京航空材料研究院,北京 100095
2 航空工业失效分析中心,北京 100095
3 航空材料检测与评价北京市重点实验室,北京 100095
4 中国航空发动机集团材料检测与评价重点实验室,北京 100095
Research Progress of Nanoindentation Methods for Measuring Residual Stress in Critical Materials of Aero-engine
LUO Jun1,2,3,4, LI Nan1,2,3,4, WANG Xi1,2,3,4, LIU Changkui1,2,3,4,*
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 AVIC Failure Analysis Center, Beijing 100095, China
3 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China
4 Key Laboratory of Aeronautical Materials Testing and Evaluation, Aero Engine Corporation of China, Beijing 100095, China
下载:  全 文 ( PDF ) ( 35410KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空发动机的需求日益增加,人们对合金性能的要求也越来越高。在制造和加工过程中引入的残余拉应力会严重影响合金的力学性能,从而缩短发动机的服役寿命。因此,残余应力的测量对发动机的可靠性和安全性起着关键性作用。本文系统归纳了纳米压痕技术的测量原理,包括接触深度、接触刚度、接触面积、硬度以及弹性模量的计算,介绍了纳米压痕测量残余应力计算模型(如Suresh、Lee、Xu、Wang、Kim以及Peng等模型)的分析过程,对比了计算模型之间的优缺点,详细综述了纳米压痕理论在航空发动机关键材料(如不锈钢、铝合金、钛合金、镍基高温合金)残余应力测量中的最新研究进展,总结了残余应力计算模型存在的不足,同时展望了纳米压痕法测量残余应力的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗军
李楠
王曦
刘昌奎
关键词:  纳米压痕  计算模型  残余应力  航空发动机  关键材料    
Abstract: With the increasing demand for aero-engine, higher requirements are put forward for the performance of engine alloys. The residual tensile stress introduced by manufacturing and machining seriously affects the mechanical properties of the alloy and shortens the service life of the aero-engine. Hence, the measurement of residual stress plays a key role in the reliability and safety of aero-engine. In this paper, the nanoindentation measurement of contact depth, contact stiffness, contact area, hardness and elastic modulus are systematically summarized. The analysis process of residual stress calculation model, such as Suresh, David, Lee, Xu, Wang, Kim and Peng models are introduced. Moreover, the advantages and disadvantages of the calculation models are compared. The latest research progress of nanoindentation theory in residual stress measurement in critical materials of aero-engine, such as stainless steel, aluminum alloy, titanium alloy and nickel-base superalloy are reviewed in detail. The shortcomings of residual stress calculation model are also summarized, and the development of nanoindentation method for measuring residual stress is prospected.
Key words:  nanoindentation    calculation model    residual stress    aero-engine    critical material
发布日期:  2024-06-25
ZTFLH:  TG133  
基金资助: 国家重点研发计划(2021YFA1600600)
通讯作者:  *刘昌奎,博士,研究员,博士研究生导师。主要从事材料与结构的失效分析与预防、材料服役条件下的损伤行为、材料组织结构与性能和工艺的关系、材料微观物理表征与评价等方面的研究工作,以及装备重大质量问题及等级事故的调查与失效分析。负责和参与了大量航空重大质量问题和飞机等级事故的事故调查与失效分析工作,负责课题20多项,发表学术论文60余篇,主编或参编专(编)著、教材6部,获授权发明专利4项。changkuiliu621@163.com   
作者简介:  罗军,2021年1月获得北京航空航天大学材料学专业博士学位,现为中国航发北京航空材料研究院工程师,在刘昌奎研究员的指导下进行博士后研究。主要从事航空发动机关键材料及构件的微观组织分析及残余应力表征技术等方面的研究,以第一作者在Journal of Materials Science & Technology、Materials & Design、Materials Science and Engineering A、Measurement等SCI期刊发表多篇论文。
引用本文:    
罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
LUO Jun, LI Nan, WANG Xi, LIU Changkui. Research Progress of Nanoindentation Methods for Measuring Residual Stress in Critical Materials of Aero-engine. Materials Reports, 2024, 38(11): 22100300-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100300  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22100300
1 Withers P J, Bhadeshia H. Materials Science and Technology, 2001, 17(4), 355.
2 Withers P J, Bhadeshia H. Materials Science and Technology, 2001, 17(4), 366.
3 Jadhav P. International Journal of Engineering and Technology, 2017, 9(2), 1139.
4 Withers P J, Reports on Progress in Physics, 2007, 70(12), 2211.
5 Zambaldi C, Raabe D. Acta Materialia, 2010, 58, 3516.
6 Guo F A, Vincent J I, Zhang Y G, et al. Rare Metal Materials and Engineering, 2001, 30(2), 105 (in Chinese).
郭富安, Vincent J I, 张永刚, 等. 稀有金属材料与工程, 2001, 30(2), 105.
7 Zhang Z, Feng Y, Tan Q, et al. Materials and Design, 2019, 166, 107603.
8 Moskalewicz T, Schaffer B, Manescu A, et al. Surface & Coatings Technology, 2007, 201, 7635.
9 Liu C K, Lin N, Zhao W X, et al. Failure Analysis and Prevention, 2019, 14(2), 8 (in Chinese).
刘昌奎, 李楠, 赵文侠, 等. 失效分析与预防, 2019, 14(2), 8.
10 Ma Y, Zhang Y, Zhang H, et al. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(2), 213.
11 Chamanfar A, Jahazi M, Gholipour J, et al. Materials Science and Engineering: A, 2014, 615, 497.
12 Sasaki T, Maruyama Y, Ohba H, et al. Journal of Instrumentation, 2014, 9(7), C07006.
13 Lin N, Wang X, Liu C K. Failure Analysis and Prevention, 2021, 16(2), 7 (in Chinese).
李楠, 王曦, 刘昌奎. 失效分析与预防, 2021, 16(2), 7.
14 Dao M, Chollacoop N V, Van Vliet K, et al. Acta Materialia, 2001, 49(19), 3899.
15 Giannakopoulos A, Suresh S. Scripta Materialia, 1999, 40(10), 1191.
16 Mata M, Alcalá J. Journal of Materials Research, 2003, 18(7), 1705.
17 Zeng K. Acta Materialia, 2001, 49(17), 3539.
18 Cheng Y T, Cheng C M. Materials Science and Engineering R: Reports, 2004, 44(4-5), 91.
19 Peng G J, Zhang T H. Journal of Theoretical and Applied Mechanics, 2022, 54(8), 2287 (in Chinese).
彭光健, 张泰华. 力学学报, 2022, 54(8), 2287.
20 Xu Z H, Li X. Micro and nano mechanical testing of materials and devices, Springer, 2008, pp.136.
21 Sneddon I N. International Journal of Engineering Science, 1965, 3(1), 47.
22 Oliver W C, Pharr G M. MRS Bulletin, 2010, 35(11), 897.
23 Strader J H, Shim S, Bei H, et al. Philosophical Magazine, 2006, 86(33-35), 5285.
24 Liu M, Zheng Q, Wang X, et al. Mechanics of Materials, 2022, 164, 104143.
25 Suresh S, Giannakopoulos A E. Acta Materialia, 1998, 46(16), 5755.
26 Lee Y H, Kwon D. Journal of Materials Research, 2002, 17(4), 901.
27 Lee Y H, Kwon D. Scripta Materialia, 2003, 49(5), 459.
28 Lee Y H, Kwon D. Acta Materialia, 2004, 52(6), 1555.
29 Xu, Z H, Li, X. Acta Materialia, 2005, 53(7), 1913.
30 Xu Z H, Li X. Philosophical Magazine, 2006, 86(19), 2835.
31 Swadener J, Taljat B, Pharr G. Journal of Materials Research, 2001, 16(7), 2091.
32 Wang Q, Ozaki K, Ishikawa H, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 242(1-2), 88.
33 Kim Y C, Ahn H J, Kwon D, et al. Metals and Materials International, 2016, 22(1), 12.
34 Kim J H, Xu H, Choi M J, et al. Journal of Materials Research, 2018, 33(22), 1.
35 Peng G, Lu Z, Ma Y, et al. Journal of Materials Research, 2018, 33(8), 884.
36 Peng G, Xu F, Chen J, et al. Metals, 2020, 10(4), 440.
37 Bolshakov A, Pharr G. Journal of Materials Research, 1998, 13(4), 1049.
38 Wang Z, Jiang Z, Hu H, et al. Journal of Materials Engineering and Performance, 2013, 22(10), 3126.
39 Zhang S. Residual stress in electrodeposited nickel coating characterized by instrumented nanoindentation. Master's Thesis, Xiangtan University, China, 2006 (in Chinese).
章莎. 用纳米压痕法表征电沉积镍镀层薄膜的残余应力, 硕士学士论文, 湘潭大学, 2006.
40 Zhang L, Cheng G G, Ding J N, et al. Chinese Journal of Sensors and Actuators, 2012, 25(6), 766 (in Chinese).
张龙, 程广贵, 丁建宁, 等. 传感技术学报, 2012, 25(6), 766.
41 Hao L P. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering. Master's Thesis, Huazhong University of Science and Technology, China, 2016 (in Chinese).
郝林坡. 基于纳米压痕和有限元技术的硅钢冲裁边缘残余应力研究, 硕士学士论文, 华中科技大学, 2016.
42 Ou H, Zhang X L. Transactions of Materials and Heat Treatment, 2019, 40(9), 95 (in Chinese).
欧昊, 张祥林. 材料热处理学报, 2019, 40(9), 95.
43 Zhan G C. Wide and Heavy Plate, 2019, 25(2), 41 (in Chinese).
詹光曹. 宽厚板, 2019, 25(2), 41.
44 Tiwari A K, Kumar A, Kumar N, et al. Measurement & Control, 2019, 52(9-10), 1252.
45 Lu H G. A study of residual stress of the brazing joint between cemented carbide and steel. Master's Thesis, Harbin Institute of Technolog, China, 2006 (in Chinese).
路汉刚. 硬质合金与钢钎焊接头的残余应力研究. 硕士学士论文, 哈尔滨工业大学, 2006.
46 Wang B A. Study on residual stress of 316L/BNi-2 brazed joint conside-ring element diffusion. Master's Thesis, East China University of Science and Technolog, China, 2017 (in Chinese).
汪保安. 考虑元素扩散作用的316L/BNi-2钎焊接头残余应力研究. 硕士学士论文, 华东理工大学, 2017.
47 Moharrami R, Sanayei M. Measurement, 2020, 158, 107718.
48 Moharrami R, Sanayei M. Journal of Materials Research and Technology, 2020, 9, 3950.
49 Moharrami R, Sanayei M. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2020, 64, 220.
50 Szkodo M, Bien A, Stanislawska A. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(1), 175.
51 Liu X, Cai L. Materials Today Communications, 2021, 28, 102454.
52 Zhao S, Zhang J, Li Y, et al. Journal of Physics D: Applied Physics, 2022, 55(27), 274002.
53 Zhang T W, Zhang J W, Qin J H, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(1), 66 (in Chinese).
孙廷威, 张建伟, 秦瑾鸿, 等. 中国科学:物理学 力学 天文学, 2023, 53(1), 66.
54 Zhao M, Xu X, Liang S. et al. Aip Advances, 2019, 9(9), 095024.
55 Wang X. IOP Conference Series: Materials Science and Engineering, 2020, 768(2), 022021.
56 Khan M, Fitzpatrick M E, Edwards L, et al. Materials Science Forum, 2010, 652, 25.
57 Khan M K, Fitzpatrick M E, Hainsworth S V, et al. Acta Materialia, 2011, 59(20), 7508.
58 Khan M K, Fitzpatrick M E, Hainsworth S V, et al. Computational Materials Science, 2011, 50(10), 2967.
59 Cao Y, Wang Y, Dong S, et al. 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro-and Nano-Optical Devices and Systems. SPIE, 2007, 6724, 285.
60 Wang Y, Gai Y, Qu S, et al. SPIE, 2009, 7493, 450.
61 Wang Y, Qu S, Gai Y X, et al. Transactions of Nonferrous Metals Society of China, 2009, 19, 767.
62 Chang C, Xiao G, Liu E, et al. Materials Science and Technology, 2019, 35(8), 986.
63 Charitidis C A, Dragatogiannis D A, Koumoulos E P, et al. Materials Science and Engineering: A, 2012, 540, 226.
64 Haghshenas M, Gharghouri M, Bhakhri V, et al. The International Journal of Advanced Manufacturing Technology, 2017, 93(9), 3733.
65 Ghanbari S, Sangid M D, Bahr D F. Journal of Materials Engineering and Performance, 2019, 28(5), 3094.
66 Zabeen S, Langer K, Fitzpatrick M E. Surface & Coatings Technology, 2018, 347, 123.
67 Mann P, Miao H Y, Gariépy A, et al. Journal of Materials Science, 2015, 50(5), 2284.
68 Greco A, Sgambitterra E, Furgiuele F. International Journal of Mechanical Sciences, 2021, 207, 106662.
69 Khosrozadeh B, Shabgard M. The International Journal of Advanced Ma-nufacturing Technology, 2017, 93(5-8), 1999.
70 Zambaldi C, Raabe D. Acta Materialia, 2010, 58(9), 3516.
71 He D, Zhu J C, Lai Z H, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 7.
72 Li S F, Zhang L, Peng G J, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(1), 19 (in Chinese).
李赛飞, 张亮, 彭光健, 等. 中国科学:物理学 力学 天文学, 2023, 53(1), 19.
73 Tao Y f, Li J, Lu Y H, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(9), 2043.
74 Zheng Z, Zhou J Y, Zhao W X, et al. Materials Science Forum, 2019, 944: 411.
75 Zhou J Y, Liu C K, Zhao W X, et al. Journal of Aeronautical Materials, 2017, 37(5), 7 (in Chinese).
周静怡, 刘昌奎, 赵文侠, 等. 航空材料学报, 2017, 37(5), 7.
76 Xiong X, Quan D, Dai P, et al. Materials Science and Engineering: A, 2015, 636, 608.
77 Chen L, Du Q, Yu M, et al. Plos One, 2021, 16(1), 0245391.
78 Feng B, Mao X, Yang G, et al. Materials Science and Engineering: A, 2009, 512(1-2), 105.
79 Thomas M, Jackson M, Scripta Materialia, 2012, 66(12), 1065.
80 Lu J Z, Zhang L, Feng A X, et al. Materials & Design, 2009, 30(9), 3673.
81 Fang X, Jin G, Cui X F, et al. Surface & Coatings Technology, 2016, 305, 208.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[3] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[4] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[5] 乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
[6] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[7] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[8] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[9] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[10] 刘虎, 束小文, 洪智亮, 杨金华, 郭洪宝, 孙世杰, 焦健. 航空发动机用SiC/SiC复合材料典型元件设计及性能评价研究进展[J]. 材料导报, 2023, 37(14): 22010147-8.
[11] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[12] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[13] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[14] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[15] 高鸿, 樊彦艳, 王立, 刘自立, 何端鹏, 于利夫, 文明. 空间太阳能电站关键材料技术需求展望[J]. 材料导报, 2022, 36(22): 22060164-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed