Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22100080-8    https://doi.org/10.11896/cldb.22100080
  金属与金属基复合材料 |
坡口形状对CLAM钢焊缝抗辐照损伤性能的影响
乔永丰1, 雷玉成1,*, 姚奕强2, 朱强1
1 江苏大学材料科学与工程学院,江苏 镇江 212013
2 中广核研究院有限公司,广东 深圳 518000
Effect of Groove Shape on Irradiation Damage Resistance of CLAM Steel Welds
QIAO Yongfeng1, LEI Yucheng1,*, YAO Yiqiang2, ZHU Qiang1
1 School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China
2 China Nuclear Power Technology Research Institute Co.,Ltd.,Shenzhen 518000,Guangdong,China
下载:  全 文 ( PDF ) ( 13775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究坡口形状对中国低活化马氏体(CLAM)钢焊缝辐照损伤性能及辐照硬化性能的影响,采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、透射电子显微镜(TEM)、掠入射X射线衍射(GIXRD)和纳米压痕技术等方法,研究了在室温下经能量为70 keV、剂量为1×1017 ions/cm2的He+辐照后,V型、U型和双U型坡口CLAM钢焊缝的辐照损伤情况及力学性能。结果表明,离子辐照后,不同坡口形状焊缝金属中均产生了氦泡、析出物等缺陷,力学性能呈现出不同程度的降低。与V型和U型坡口焊缝相比,双U型坡口焊缝辐照后焊缝内部缺陷分布更均匀、尺寸更小。这是由于在三类焊缝中,双U型坡口焊缝热输入更小,焊缝晶粒组织相对较小,晶界密度更高。更高密度的晶界阻碍了缺陷间的相互聚集,减小了缺陷的尺寸。辐照后双U型坡口焊缝表面粗糙度最低,氦泡、析出物尺寸最小,衍射峰偏移量、宽化率最低,表面硬度最低,抗辐照硬化性能最好。这表明通过控制焊接坡口的形状,细化焊缝晶粒组织,可显著提升焊缝抗辐照损伤性能及抗辐照硬化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔永丰
雷玉成
姚奕强
朱强
关键词:  CLAM钢  焊接坡口  辐照损伤  辐照硬化  纳米压痕    
Abstract: To investigate the effect of groove shape on theirradiation damage and hardening performance of Chinese low activation martensitic (CLAM) steel welds, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence X-ray diffraction (GIXRD), and Nano-indentation technology were used to study the irradiation damage and mechanical properties of V-shaped, U-shaped, and double U-shaped CLAM steel welds after irradiation with He+ at an energy of 70 keV to a dose of 1×1017 ions/cm2 at room temperature. The results showed that after ion irradiation, defects such as helium bubbles and precipitates were generated in weld metals with different groove shapes, and the degree of reduction in mechanical performance varies. Compared with V-shaped and U-shaped groove welds, double U-shaped groove welds have a more uniform distribution and smaller sizes of internal defects after irradiation. This is because among the three types of welds, the double U-groove weld has a smaller heat input, a relatively smaller grain structure, and a higher grain boun-dary density. The higher density of grain boundaries hinders the mutual aggregation of defects, and reduces the size of defects. After irradiation, the surface roughness of the double U-shaped groove weld is the lowest, the size of helium bubbles and precipitates is the smallest, the diffraction peak offset and broadening rate are the lowest, the surface hardness is the lowest, and the irradiation hardening resistance is the best. This indicates that by controlling the shape of the welding groove and refining the grain structure of the weld, the irradiation damage resistance and irradiation hardening resistance of the weld can be significantly improved.
Key words:  CLAM steel    welding groove    irradiation damage    irradiation hardening    nano-indentation
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TG442  
基金资助: 国家自然科学基金(51875264)
通讯作者:  *雷玉成,江苏大学材料科学与工程学院教授、博士研究生导师。2006年12月毕业于江苏大学,获得工学博士学位,目前主要从先进材料的连接技术、焊接过程控制及模拟等方面的研究工作。在国内外学术期刊发表论文100余篇,授权国家发明专利5项。yclei@ujs.edu.cn   
作者简介:  乔永丰,2019年6月毕业于兰州理工大学,获工学硕士学位。现为江苏大学材料科学与工程学院博士研究生,目前主要从事材料辐照效应的研究。
引用本文:    
乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
QIAO Yongfeng, LEI Yucheng, YAO Yiqiang, ZHU Qiang. Effect of Groove Shape on Irradiation Damage Resistance of CLAM Steel Welds. Materials Reports, 2024, 38(10): 22100080-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100080  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22100080
1 Yin S, Yang L, Liu Y, et al. Journal of Nuclear Materials, 2022, 567, 153805.
2 Peng L, Huang Q, Li C, et al. Journal of Nuclear Materials, 2009, 386, 312.
3 Chen X, Huang Y, Madigan B, et al. Fusion Engineering and Design, 2012, 87(9), 1639.
4 Xin Y, Qiu J, Ju X, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(18), 3166.
5 Zhu Y, Wan F, Gao J, et al. Science China Physics, Mechanics and Astronomy, 2012, 55(11), 2057.
6 Alamo A, Bertin J L, Shamardin V K, et al. Journal of Nuclear Materials, 2007, 367, 54.
7 Nishiyama Y, Onizawa K, Suzuki M, et al. Acta Materialia, 2008, 56(16), 4510.
8 Konobeev Y V, Dvoriashin A M, Porollo S I, et al. Journal of Nuclear Materials, 2006, 355(1), 124.
9 Pang L, Tai P, Chang H, et al. Journal of Nuclear Materials, 2022, 558, 153357.
10 Xu C, Chen W Y, Chen Y R, et al. Journal of Nuclear Materials, 2018, 509, 644.
11 Rensman J, Van Hoepen J, Bakker J B M, et al. Journal of Nuclear Materials, 2002, 307, 245.
12 Gao J, Song P, Huang Y J, et al. Journal of Nuclear Materials, 2019, 524, 1.
13 Silva C M, Leonard K J, Garrison L M, et al. Materials Science and Engineering: A, 2021, 823, 141780.
14 Egeland G W, Valdez J A, Maloy S A, et al. Journal of Nuclear Materials, 2013, 435(1), 77.
15 Oyoshi K, Hishita S, Wada K, et al. Applied Surface Science, 1996, 100, 374.
16 Huang X C, Feng Y, Dou Y K, et al. Scripta Materialia, 2016, 113, 114.
17 Meric De Bellefon G, Robertson I M, Allen T R, et al. Scripta Materialia, 2019, 159, 123.
18 Bai J, Li J, Fu C, et al. Journal of Nuclear Materials, 2021, 557, 153241.
19 Lam N Q, Okamoto P R, Li M. Journal of Nuclear Materials, 1997, 251, 89.
20 Lemine O M. Superlattices and Microstructures, 2009, 45(6), 576.
21 Bonny G, Konstantinovic M J, Bakaeva A, et al. Acta Materialia, 2020, 198, 1.
22 Liu Z Y, He B, Qu X, et al. Chinese Physics B, 2019, 28(8), 114.
23 Tschopp M A, Horstemeyer M F, Gao F, et al. Scripta Materialia, 2011, 64(9), 908.
24 Li C, Chen J, Liu F, et al. Materials Reports, 2017, 31(S1), 184(in Chinese).
李承亮, 陈骏, 刘飞华, 等. 材料导报, 2017, 31(S1), 184.
25 Mattucci M A, Cherubin I, Changizian P, et al. Acta Materialia, 2021, 207, 116702.
26 Badji R, Chauveau T, Bacroix B. Materials Science and Engineering: A, 2013, 575, 94.
27 Li C, Shu G, Liu W, et al. Annals of Nuclear Energy, 2019, 134, 20.
28 Zhang X, Mei X, Cao X, et al. Journal of Nuclear Materials, 2018, 509, 496.
29 Linga Murty K. Journal of Nuclear Materials, 1999, 270(1), 115.
30 Tanigawa H, Klueh R L, Hashimoto N, et al. Journal of Nuclear Materials, 2009, 386, 231.
31 Xu S, Xiong L, Chen Y, et al. Journal of the Mechanics and Physics of Solids, 2016, 96, 460.
32 Jiang S, Yu C, Zheng P, et al. Journal of Nuclear Materials, 2021, 544, 152712.
33 Tanimoto H, Mizubayashi H, Teramae N, et al. Journal of Alloys and Compounds, 1994, 211, 136.
[1] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[2] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[3] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[4] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[5] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[6] 王耀城, 刘定坤, 刘伟, 吕阳, 郑愚. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.
[7] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[8] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[9] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[10] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[11] 李越, 李玉龙, 李学文. Q235钢表面TIG焊堆焊铁基非晶涂层的组织与性能[J]. 材料导报, 2020, 34(18): 18135-18138.
[12] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[13] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[14] 肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
[15] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed