Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17058-17066    https://doi.org/10.11896/cldb.20050032
  高熵合金 |
高熵合金:面向聚变堆抗辐照损伤的新型候选材料
王雪姣, 乔珺威, 吴玉程
太原理工大学材料科学与工程学院,太原 030024
High Entropy Alloys:the New Irradiation-Resistant Candidate Materials Towards the Fusion Reactors
WANG Xuejiao, QIAO Junwei, WU Yucheng
School of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China
下载:  全 文 ( PDF ) ( 8014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着核聚变技术的发展,材料的辐照损伤作为制约其发展的重要问题越来越受到人们的关注。材料在聚变堆服役时面临着高温、高密度等离子体溅射、腐蚀、中子辐照等一系列极端工况,这就要求材料具备良好的力学性能、抗中子辐照能力、抗等离子体溅射能力、耐腐蚀等诸多特性。近年来,高熵合金作为一种面向聚变堆抗辐照损伤的新型候选材料逐渐发展起来,其抗辐照损伤能力的评估以及辐照损伤机理都值得深入研究。高熵合金是一种新的合金设计理念,可通过多主元合金自身较高的熵值和原子不易扩散的特性获得热稳定性高的固溶相。高熵合金具有区别于传统合金的特性,包括高熵效应、晶格畸变效应、迟滞扩散效应以及性能上的“鸡尾酒”效应,这些特性使高熵合金具有高的强度和硬度、耐腐蚀性能、抗高温软化性能、良好的软磁性能等优势。目前高熵合金的辐照损伤研究主要通过离子辐照进行,集中在位错环演化、氦泡演化以及相稳定性的研究等方面。研究发现,离子辐照后高熵合金中的位错环、氦泡的尺寸被显著减小,这归因于高熵合金基体本身存在较大的畸变,它们作为吸附空位、氦原子等缺陷的阱缓解了辐照损伤。另外,目前针对聚变堆的高温工况,开发了以V、Hf、Ta、W等高熔点元素为主元的抗辐照难熔高熵合金体系。本文对高熵合金辐照损伤行为的研究现状与进展进行了归纳与梳理,包括高熵合金离子辐照下位错环和氦泡的演化规律、高熵合金离子辐照下基体及析出物的相稳定性、高熵合金在中子辐照下的辐照行为等,并介绍了面向聚变堆的抗辐照难熔高熵合金体系的开发与研究进展。最后对未来的研究方向进行了展望,以期为面向聚变堆的抗辐照高熵合金的开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪姣
乔珺威
吴玉程
关键词:  多主元合金  高熵合金  辐照损伤  离子辐照  位错环    
Abstract: With the development of nuclear fusion technology, the irradiation damages of materials has gained increasing attention as the vital issues for the restriction of the development of nuclear fusion. During the operation of fusion reactors, the materials are confronted with series of extreme operating conditions, including high temperature, the sputtering of high-density plasma, erosion, neutron irradiation, etc., which requires that the materials have fine characters such as good mechanical properties, neutron irradiation resistance, plasma sputtering resistance and corrosion resistance, etc. Lately, high entropy alloys (HEAs) have been gradually devised as a new irradiation-resistant candidate for fusion reactors materials, and the evaluation of irradiation resistance and the irradiation damage mechanism both require in-depth researches. HEAs are a new concept of alloy design, which forms high-thermostability solid solution phase by high entropy and low diffusivity of multi-component alloy itself. The characters of HEAs are distinguished from conventional alloys, including high entropy effect, high lattice distortion, sluggish diffusion effect and ‘cocktail’ effect, which lead to the high strength and hardness, corrosion resistance, high temperature softening resistance, excellent soft magnetic properties of HEAs. The present researches of irradiation damage of HEAs are mainly conducted by ion irradiation and it is focused on the evolution of dislocation loops, He bubbles and phase stability. It is found that the formation of dislocation loops and He bubbles of HEAs under ion irradiation has been suppressed evidently, which may be ascribed that the high lattice distortion acts as the traps to absorb the irradiation damages, such as vacancies and He atoms, thus relieve the irradiation damages. In addition, towards the operating condition of the fusion plants at high temperature, irradiation-resistant refractory HEAs have been gradually developed, which mainly utilize the high melting point elements as main compositions, such as V, Hf, Ta, W, etc. This paper introduces the research states and progresses of irradiation damages in HEAs, including the evolution of dislocation loops, He bubbles, the phase stability of matrix and precipitations of HEAs under ion irradiation, the irradiation behavior of HEAs under neutron irradiation, as well as the development and progress of irradiation-resistance refractory HEAs towards fusion reactors. Finally, the research directions in future are prospected so as to supply the reference for the development of irradiation-resistant HEAs towards fusion reactor.
Key words:  multi-component alloys    high entropy alloys    irradiation damages    ion irradiation    dislocation loops
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG139.4  
基金资助: 山西省高等学校科技创新项目(2019L0168)
通讯作者:  xuejiaowang2012@sina.com   
作者简介:  王雪姣,太原理工大学讲师。2013年获北京科技大学材料科学与工程学院工学学士学位,2019年1月获北京科技大学材料科学与工程学院工学博士学位。目前从事高熵合金的强韧化、反应堆材料的辐照损伤研究,发表SCI论文6篇。
乔珺威,太原理工大学教授,博士研究生导师,材料科学与工程学院副院长。中国材料研究学会理事,山西省学术技术带头人,山西省青年拔尖人才,太原理工大学首届五四青年奖章获得者。2011年获北京科技大学新金属材料国家重点实验室工学博士学位。目前从事的研究方向包括: 特种高熵合金结构材料,新型不锈钢(TWIP和TRIP效应),块体非晶合金的强韧化,材料中的锯齿流变行为,金属材料在极端条件下的服役行为(低温、高应变速率、离子辐照等)。发表SCI收录论文120余篇,4篇论文先后入选ESI论文,申请国家发明专利10项,担任材料类期刊Scientific Reports、JOM、Progress in Materials Science、Applied Physics Letters、Materials Letters等审稿人。
吴玉程,太原理工大学教授,博士研究生导师。1984年获合肥工业大学工学学士学位,1987年获工学硕士学位,2000年获中国科学院理学博士学位。德国斯图加特大学高级访问学者、中国科学院合肥物质研究院客座研究员、博士研究生导师,澳大利亚皇家墨尔本理工大学、英国圣安德鲁斯大学荣誉教授。目前的研究方向包括:核聚变材料、煤炭转化与利用等能源材料的研究以及功能纳米材料的研究。担任《材料热处理学报》编委会副主任,《中国有色金属学报》《功能材料》等编委,《山西高等学校社会科学学报》《太原理工大学》(社科版)主编。近年来,先后主持国家重大基础研究ITER重大专项、科技部国际合作项目、国家自然科学基金项目、国家重点新产品研究计划、国家留学回国人员启动基金、教育部科学技术研究重大项目等30余项研究。发表论文300多篇,主编国家精品课程教材1部,出版专著11部,发明专利30余项。获原机械工业部教书育人特等奖、原机械工业部优秀青年科技奖、中国机械工业、安徽省科技进步奖和安徽省自然科学奖等。
引用本文:    
王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
WANG Xuejiao, QIAO Junwei, WU Yucheng. High Entropy Alloys:the New Irradiation-Resistant Candidate Materials Towards the Fusion Reactors. Materials Reports, 2020, 34(17): 17058-17066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050032  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17058
1 Yang F J. Nuclear physics, Higher Education Press, China, 2008 (in Chinese).
杨福家. 原子核物理, 高等教育出版社, 2008.
2 Guo J K. Fusion reactor material, Chemical Industry Press, China, 2007 (in Chinese).
郝嘉琨.聚变堆材料, 化学工业出版社, 2007.
3 Yang W D. Reactor metallurgy, Atomic Energy Press, China, 2000 (in Chinese).
杨文斗.反应堆材料学, 原子能出版社, 2000.
4 Zinkle S J, Snead L L. Annual Review of Materials Research, 2014, 44(1), 241.
5 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
6 Bao M L, Qiao J W. Progress of materials in China, 2018, 37(4), 264 (in Chinese).
鲍美林,乔珺威. 中国材料进展, 2018, 37(4), 264.
7 Zhang W, Liaw P K, Zhang Y. Science China Materials, 2018, 61(1), 2.
8 Liu Y, Li Y X, Chen X, et al. Materials Review, 2006, 20(4), 4 (in Chinese).
刘源,李言祥,陈祥,等. 材料导报, 2006, 20(4), 4.
9 Li A, Shi J, Xie M. Materials Review A:Review Papers, 2018, 32(2), 461(in Chinese).
李安敏, 史君佐, 谢明款. 材料导报:综述篇, 2018, 32(2), 461.
10 Chen Y Y, Duval T, Hung U D, et al. Corrosion Science, 2005, 47(9), 2257.
11 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
12 Kai W, Li C C, Cheng F P, et al. Corrosion Science, 2016, 108, 209.
13 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534(7606), 227.
14 Li Z, Tasan C C, Springer H, et al. Scientific Reports, 2017, 7, 40704.
15 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546.
16 Yasuda H Y, Miyamoto H, Cho K, et al. Materials Letters, 2017, 199, 120.
17 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science and Engineering A, 2016, 675, 99.
18 Yeh J W. JOM, 2013, 65(12), 1759.
19 Huang H, Wu Y, He J, et al. Advanced Materials, 2017, 29(30), 1701678.
20 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1455.
21 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
22 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2012, 26, 122.
23 Chen W, Ding X, Feng Y, et al. Journal of Materials Science and Technology, 2018, 34(2), 355.
24 Chen D, Tong Y, Wang J, et al. Journal of Nuclear Materials, 2018, 510, 187.
25 Granberg F, Nordlund K, Ullah M W, et al. Physical Review Letters, 2016, 116(13), 135504.
26 Lu C, Yang T, Jin K, et al. Acta Materialia, 2017, 127, 98.
27 Koch L, Granberg F, Brink T, et al. Journal of Applied Physics, 2017, 122(10), 105106.
28 Chen D, Zhao S, Sun J, et al. Journal of Nuclear Materials, 2019, 526, 151747.
29 Shi S, He M R, Jin K, et al. Journal of Nuclear Materials, 2018, 501, 132.
30 Tong Y, Velisa G, Zhao S, et al. Materialia, 2018, 2, 73.
31 Kumar N A P A P K, Li C, Leonard K J J, et al. Acta Materialia, 2016, 113, 230.
32 Yan Z, Liu S, Xia S, et al. Journal of Nuclear Materials, 2018, 505, 200.
33 Lu C, Niu L, Chen N, et al. Nature Communications, 2016, 7, 13564.
34 Lu C, Jin K, Béland L K, et al. Scientific Reports, 2016, 6, 19994.
35 Jin K, Lu C, Wang L M, et al. Scripta Materialia, 2016, 119, 65.
36 Lu C, Yang T N, Jin K, et al. Journal of Nuclear Materials, 2019, 524, 60.
37 Yang T ni, Lu C, Jin K, et al. Journal of Nuclear Materials, 2017, 488, 328.
38 Tunes M A, Le H, Greaves G, et al. Intermetallics, 2019, 110, 106461.
39 Yang L, Ge H, Zhang J, et al. Journal of Materials Science and Technology, 2019, 35(3), 300.
40 Wang Y, Zhang K, Feng Y, et al. Journal of Nuclear Materials, 2019, 527, 151785.
41 Velişa G, Fan Z, Crespillo M L, et al. Journal of Alloys and Compounds, 2020, 832, 154918.
42 Pu G, Lin L, Ang R, et al. Applied Surface Science, 2020, 516, 146129.
43 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2013, 38, 70.
44 Nagase T, Rack P D, Noh J H, et al. Intermetallics, 2015, 59, 32.
45 Kombaiah B, Jin K, Bei H, et al. Materials and Design, 2018, 160, 1208.
46 He M R, Wang S, Shi S, et al. Acta Materialia, 2017, 126, 182.
47 Yang T, Xia S, Guo W, et al. Scripta Materialia, 2018, 144, 31.
48 Yang T, Xia S, Liu S, et al. Scientific Reports, 2016, 6, 32146.
49 Xia S, Gao M C, Yang T, et al. Journal of Nuclear Materials, 2016, 480, 100.
50 Barr C M, Nathaniel J E, Unocic K A, et al. Scripta Materialia, 2018, 156, 80.
51 Li C, Hu X, Yang T, et al. Journal of Nuclear Materials, 2019, 527, 151838.
52 Barron P J, Carruthers A W, Fellowes J W, et al. Scripta Materialia, 2020, 176, 12.
53 Kareer A, Waite J C, Li B, et al. Journal of Nuclear Materials, 2019, 526, 151744.
54 Patel D, Richardson M D, Jim B, et al. Journal of Nuclear Materials, 2020, 531, 152005.
55 Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Journal of Nuclear Materials, 2020, 529, 151955.
56 Lu Y, Huang H, Gao X, et al. Journal of Materials Science and Technology, 2019, 35(3), 369.
[1] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[2] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[3] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[4] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[5] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[6] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[7] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[8] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[9] 田梦云, 吴长军, 刘亚, 彭浩平, 王建华, 苏旭平. CoxMn2-xCrFeNi高熵合金的相稳定性[J]. 材料导报, 2020, 34(17): 17067-17071.
[10] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
[11] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[12] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[13] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[14] 肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
[15] 沈利华, 杨晓芳. 基于文献计量分析的高熵合金研究进展[J]. 材料导报, 2020, 34(11): 11171-11178.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed