Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17052-17057    https://doi.org/10.11896/cldb.20040198
  高熵合金 |
等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究
魏仕勇1,2, 彭文屹1, 赵文超1, 康依凡1, 陈斌1, 鲍蓉蓉1, 邓晓华3
1 南昌大学材料科学与工程学院,南昌 330031
2 江西省科学院应用物理研究所,南昌 330090
3 南昌大学空间科学与技术研究院,南昌 330031
Research on Parameter Optimization and Microstructure and Properties of CoCrFeMnNi High Entropy Alloy Coating Cladded by Plasma Arc Welding
WEI Shiyong1,2, PENG Wenyi1, ZHAO Wenchao1, KANG Yifan1, CHEN Bin1, BAO Rongrong1, DENG Xiaohua3
1 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
2 Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330090, China
3 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 6420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子熔覆技术在Q235钢基体上制备CoCrFeMnNi高熵合金涂层,通过正交试验法优化等离子熔覆工艺参数。利用XRD、SEM、EDS、EBSD以及显微硬度计对优化后熔覆层的组织和性能进行分析。结果表明,工艺参数对熔覆层稀释率的影响程度由大到小依次为行走速度、弧电流和送粉气流量,对熔覆层显微硬度的影响程度依次为弧电流、行走速度和送粉气流量。综合极差、方差和熔覆层宏观形貌分析,选出最优工艺参数组合为:弧电流70 A,行走速度7 mm/s,送粉气流量8 L/s。在此工艺参数下,熔覆层表面无明显的宏观裂纹,但存在一些孔隙、微孔以及少量的偏聚物。熔覆层物相以类Ni的FCC相为主,各主元素在熔覆层表面分布均匀。熔覆层晶粒尺寸以小于10 μm为主,占92.7%。小角度晶界取向差在5°以内呈集中分布,而大角度晶界取向差在15~55°之间呈随机分布。熔覆层的稀释率约为17.86%,熔覆层表面显微硬度分布较均匀,而截面显微硬度受组织结构的影响呈梯度变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏仕勇
彭文屹
赵文超
康依凡
陈斌
鲍蓉蓉
邓晓华
关键词:  等离子熔覆(PAW)  CoCrFeMnNi高熵合金涂层  参数优化  组织  性能    
Abstract: The parameters of plasma arc welding (PAW) were optimized by orthogonal tests, the CoCrFeMnNi high entropy alloy coating was prepared by PAW on Q235 steel substrate. The microstructure and properties of cladding layer were analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron back scatter diffraction (EBSD) and microhardness tes-ter.The results showed that the significance influence of plasma process parameters on the dilution ratio of cladding layer is in turn with welding speed, the arc current and feeding gas flow, but which on the microhardness of cladding layer is in turn with the arc current, welding speed and feeding gas flow. The optimal parameter combination obtained by the range, variance and macromorphology of cladding layer is welding current of 70 A, welding speed of 7 mm/s, feeding gas of 8 L/s. Under these conditions, the cladding layer has no obvious macroscopic crack, but it has many pores, micro holes and few aggregations. The cladding layer is mainly composed of FCC structure phase as the type phase of Ni, the main elements are uniformly distributed on the cladding layer surface. The diameter of 92.7% grains within cladding layer surface is less than 10 microns. The oriention distribution of the low-angle grain boundarys (LAGBS) is concentrated within 5°, but that of the high-large angle grain boun-darys (HAGBS) is randomly distributed at 15—55°. The dilution ratio of the coating layer is about 17.86%. The hardness distribution on cladding layer surface is relatively uniform, however, that of the cross-section is changed with the gradient for microstucture.
Key words:  plasma arc welding    CoCrFeMnNi entropy alloy coating    parameter optimization    microstructure    property
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG455  
基金资助: 国家自然科学基金(51861025);江西省重点研发计划项目(20171BBE50043)
通讯作者:  wenyi.peng@163.com   
作者简介:  魏仕勇,江西省科学院应用物理研究所副研究员。2003年6月本科毕业于南昌航空大学,获得工学学士学位,现为南昌大学材料科学与工程学院博士研究生,在彭文屹教授的指导下进行研究。目前主要从事金属材料及其表面改性的研究工作。近年来,在金属材料及其表面改性领域发表论文20余篇。
彭文屹,南昌大学材料科学与工程学院教授、博士研究生导师,江西省百千万人才(2009年)。教育部学位与研究生教育发展中心学位评审专家、国家自然基金委通讯评委、科技部国家中小企业创新基金评委等。第十三届国际材联亚洲材料大会(IUMRS-ICA2012)分会主席,中国机械工程学会会员。获江西省技术发明二等奖一项,科技进步三等奖一项。2006年于上海交通大学取得工学博士学位。
邓晓华,理学博士,教授,博士研究生导师, 教育部“长江学者奖励计划”特聘教授,国家杰出青年基金获得者,南昌大学副校长。国家自然科学基金委员会专家评审组成员。主持国家自然科学基金委重大项目,教育部科学技术研究重大项目,中奥国际合作项目,论文曾在国际著名期刊Nature,Science, Physics of Plasma,Journal of Plasma Physics等发表。
引用本文:    
魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
WEI Shiyong, PENG Wenyi, ZHAO Wenchao, KANG Yifan, CHEN Bin, BAO Rongrong, DENG Xiaohua. Research on Parameter Optimization and Microstructure and Properties of CoCrFeMnNi High Entropy Alloy Coating Cladded by Plasma Arc Welding. Materials Reports, 2020, 34(17): 17052-17057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040198  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17052
1 Yeh A C, Chang Y J, Tsai C W, et al. Metallurgical & Materials Tran-sactions A,2014, 45(1), 184.
2 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
3 Tan Y Q,Wang X M,Zhu S,et al.Materials Reports A:Review Papers,2020,34(3), 5120(in Chinese).
谭雅琴,王晓明,朱胜,等.材料导报:综述篇,2020,34(3), 5120.
4 Cantor B, Chang T H, Knight P. Journal of Alloys and Compounds, 2019,783, 292.
5 Yang M B, Liu J, Zhong L X, et al. Journal of Chongqing University of Technology (Natural Science), 2019(2),99(in Chinese).
杨明波,刘婧,钟罗喜,等.重庆理工大学学报(自然科学),2019(2),99.
6 Gorban V F, Andreev A A, Chikrzhov A M,et al. Journal of Superhard Materials, 2019, 41(1), 38.
7 Feng X B, Fan S F, Meng G F M, et al. Applied Nanoscience, 2019,19(1),1.
8 Niu P D, Lir D, Yuan T C, et al. Intermetallics, 2019, 104, 24.
9 Wu C S, Wang L, Ren W J, et al. Journal of Manufacturing Processes, 2014,16(1),74.
10 Bai X B, Colegrve P, Ding J L, et al. International Journal of Heat & Mass Transfer, 2018, 124,504.
11 Sun J, Wu C S, Feng Y. International Journal of Thermal Sciences,2011, 50(9),1664.
12 Tahaei A I, Hore Y, et al. Metallurgical & Materials Transactions A,2017, 48(3),1053.
13 Huang J Y, Lu J T, Zhou Y L, et al. Surface Technology, 2018,47(4),42.
14 Wei Y, Wei X S, Chen B, et al. Transactions of Nonferrous Metals Society of China,2018,28,2511.
15 Soufiane Oukach, Bernard Pateyron, Lech Pawłowski. Surface Science Reports,2019,74,213.
16 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Journal of Alloys and Compounds, 2014, 587, 544.
17 Tong Z P, Ren X D, Jiao J F, et al. Joural of Alloys and Compounds,2019,785, 1144.
18 Li S H, Hassanin M M, Attallah J E, et al. Acta Materialia,2016,105, 75.
19 Wei M, Wan Q, Li X F, et al. Surface Technology,2019,48(6), 138(in Chinese).
魏民,万强,李晓峰,等.表面技术,2019,48(6), 138.
20 Lin G, Ou X Q, Song N, et al. Materials Science & Engineering A,2019,746, 356.
21 Li X F, Feng Y H, Liu B, et al. Journal of Alloys and Compounds,2019,788, 485.
22 Stepanov N D, Yu N, Yurchenko M A, et al. Journal of Alloys & Compounds, 2016, 687, 59.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[5] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[6] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[7] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[8] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[9] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[10] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[11] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[12] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[13] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[14] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[15] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed