Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17047-17051    https://doi.org/10.11896/cldb.20060192
  高熵合金 |
基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备
陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义
湖南大学材料科学与工程学院,长沙 410082
Preparation of FeCrNiCuAlSn0.5 High-entropy Alloys Coating by Thermite Reaction
CHEN Gang, LUO Tao, SHEN Shucheng, TAO Tao, TANG Xiaotian, XUE Wei, XIA Yi
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4187KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金(HEA)由于其多主元和高混合熵的特点,具有一些传统合金难以实现的优异性能,在表面技术领域具有很大的应用前景。本研究采用基于铝热反应/喷射沉积的高熵合金熔覆涂层技术,在45钢表面制备了FeCrNiCuAlSn0.5高熵合金涂层,并采用XRD、SEM和EDS分析了FeCrNiCuAlSn0.5高熵合金涂层的相结构、显微组织及元素分布,利用维氏硬度仪、顶断试验机和球盘式摩擦计测定了涂层的硬度、结合强度及摩擦磨损性能。结果表明,喷射涂层主要由FCC相和BCC相组成,可能含有少量的Ni3Sn2相。涂层组织为树枝晶,二次枝晶臂间距大约为(5.25±2.75) μm,平均冷却速度达到2.37×104 K/s。涂层与基体交界处未出现气孔、夹杂等缺陷,实现了良好的冶金结合,涂层与基体的平均结合强度为(412.8±16) MPa。涂层的平均显微硬度值为(539±10)HV,摩擦系数为0.50,磨损率为(7.24±0.52)×10-6 mm3/(N·m);而45钢基体的摩擦系数为0.75,磨损率为(1.45±0.35)×10-5 mm3/(N·m),表现出比基体更为优异的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
罗涛
沈书成
陶韬
唐啸天
薛伟
夏义
关键词:  高熵合金  铝热反应  喷射沉积  涂层    
Abstract: High-entropy alloy(HEA) has some excellent properties which are difficult to achieve by traditional alloys because of its characteristics of multi-principal element and high mixing entropy, and has great application prospects in the field of surface technology. In this paper, FeCrNiCuAlSn0.5 HEA coating was prepared on the surface of 45 steel based on the thermite reaction/spray deposition HEA cladding coating technology. XRD, SEM and EDS were used to analyze the phase structure, microstructure and element distribution of the FeCrNiCuAlSn0.5 HEA coa-ting, and the hardness, bonding strength, friction and wear properties of the coating were determined using Vickers hardness tester, top breaking test machine and ball disc friction meter. The results showed that the spray coating was mainly composed of FCC phase and BCC phase, and may contained a small amount of Ni3Sn2. The microstructure of coating was dendrite, the secondary dendrite arm spacing was about (5.25±2.75) μm, and the average cooling rate reached 2.37×104 K/s. No defects such as pores and inclusions appeared at the interface between the coating and the substrate, and a good metallurgical bond was achieved. The average bonding strength of the coating and substrate was (412.8±16) MPa. The average microhardness of the coating was (539±10)HV, the friction coefficient and the wear rate was 0.50, (7.24±0.52)×10-6 mm3/(N·m), respectively, while the friction coefficient and wear rate of the 45 steel substrate was 0.75, (1.45±0.35)×10-5 mm3/(N·m), respectively, showing more excellent wear resistance than the substrate.
Key words:  high-entropy alloy    thermite reaction    spray deposition    coating
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51971091)
通讯作者:  chengang811@163.com   
作者简介:  陈刚,湖南大学,教授,博士研究生导师。2005年6月获得湖南大学材料加工工程博士学位,先后主持或参与了国家“863”、国家科技攻关项目、国家自然科学基金项目、部省级重点项目等40余项。在国内外学术期刊上发表论文80余篇,授权国家发明专利10余项,主要研究方向包括:快速凝固与喷射沉积、粉末冶金及金属注射成形、高熵合金及其涂层等。
引用本文:    
陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
CHEN Gang, LUO Tao, SHEN Shucheng, TAO Tao, TANG Xiaotian, XUE Wei, XIA Yi. Preparation of FeCrNiCuAlSn0.5 High-entropy Alloys Coating by Thermite Reaction. Materials Reports, 2020, 34(17): 17047-17051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060192  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17047
1 Lim X Z.Nature, 2016, 533(7603), 306.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Anas Ahmad Siddiqui, Avanish Kumar Dubey, Christ Prakash Paul. Surface & Coatings Technology, 2019,361, 27.
4 Yan J H, Li K L, Wang Y, et al.Materials Review B:Research Papers, 2019,33(5), 1671(in Chinese).
颜建辉,李凯玲,汪异,等.材料导报:研究篇, 2019,33(5), 1671.
5 Singh S, Wanderka N, Murty B S, et al. Acta Materialia,2011,59,182.
6 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758.
7 Guo C A, Zhao Z K, Zhao S, et al.Materials Review A:Review Papers, 2019,33(5),1462(in Chinese).
郭策安,赵宗科,赵爽,等.材料导报:综述篇, 2019, 33(5),1462.
8 Dou D, Li X C, Zheng Z Y, et al. Surface Engineering, 2016, 32(10),766.
9 Kumar A, Dhekne P, Swarnakar A K, et al. Materials Letters, 2017, 188,73.
10 Gao X J, Guo N N, Zhu G M, et al. Surface Technology,2019, 48(6),107(in Chinese).
高绪杰,郭娜娜,朱光明,等.表面技术, 2019, 48(6),107.
11 Huang P K, YEH J W, Shun T T, et al. Advanced Engineering Mate-rials, 2004, 6 (1-2),74.
12 Ren B, Lv S J, Zhao R F. Surface Engineering, 2014,30,152.
13 Chen Y Y, Hong U T, Shih H C, et al. Corrosion Science, 2005,47,2679.
14 Zhu S P, Yue P, Yu Z Y, et al. Materials (Basel), 2017,10,698.
15 Kim J D, Kang K H, Kim J N, et al. Applied Physics A,2004,79,1583.
16 Chen G, Zhu L H, Shen S C, et al.Surface Engineering, DOI: 10.1080/02670844.2018.1524036.
17 Huang C, Zhang Y, Vilar R, et al. Materials and Design. 2012,41,338.
18 Jin G, Cai Z B, Guan Y J, et al. Applied Surface Science, 2018,445,113.
19 Chen L J, Bobzin K, Zhou Z, et al.Surface & Coatings Technology, 2019,358,215.
20 Sha C H, Zhou Z F, Xie Z H, et al.Applied Surface Science, 2020, 507,145101.
21 Duraiselvam M, Galun R, Siegmann S, et al.Advanced Engineering Materials, 2007, 9(3),171.
22 Braeckman B R, Depla D. Journal of Alloys and Compounds, 2015, 646,810.
23 Xiao H B, La P Q, Wang X C, et al.Hot Working Technology, 2018,47(2),118(in Chinese).
肖海波,喇培清,王小翠, 等.热加工工艺, 2018,47(2), 118.
24 Chen G, Shen S C, Ni S, et al.Journal of Central South University, 2018,25 (12), 2962.
25 Akira Takeuchi, Akihisa Inoue. Materials Transactions, 2005,46, 2817.
26 Yang X, Zhang Y.Materials Chemistry and Physics, 2012,132, 233.
27 Guo S, Ng C, Lu J, et al.Journal of Applied Physics, 2011, 109(10), 213.
28 Guo S, Liu C T.Materials International, 2011, 21(6), 433.
29 Li J N.Laser cladding technology and application, Chemical Industry Press, China, 2016(in Chinese).
李嘉宁.激光熔覆技术及应用,化学工业出版社, 2016.
30 Wu J J, Cao X M, Wen M.Modern metal thermal spraying technology, Chemical Industry Press, China, 2007(in Chinese).
武建军, 曹晓明, 温鸣. 现代金属热喷涂技术,化学工业出版社, 2007.
31 Cheng T Y, Zhang S H. Rapid solidification technology and advanced materials, Aerospace Publishing House, China, 1990 (in Chinese).
程天一, 章守华. 快速凝固技术与新型合金,宇航出版社, 1990.
32 Sun D R, Zhang H, Men Z X, et al. Heavy Castings and Forgings, 2014(4),1(in Chinese).
孙德润,张宏,门正兴,等.大型铸锻件, 2014(4),1.
33 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2012(in Chinese).
温诗铸, 黄平.摩擦学原理,清华大学出版社, 2012.
[1] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[2] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[3] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[4] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[5] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[6] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[7] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[10] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[11] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[12] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[13] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[14] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[15] 田梦云, 吴长军, 刘亚, 彭浩平, 王建华, 苏旭平. CoxMn2-xCrFeNi高熵合金的相稳定性[J]. 材料导报, 2020, 34(17): 17067-17071.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed