Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17018-17030    https://doi.org/10.11896/cldb.20040078
  高熵合金 |
高熵合金辐照损伤的实验研究进展
靳柯1,2, 卢晨阳3, 豆艳坤4, 贺新福4, 杨文4
1 北京理工大学材料学院,北京 100081
2 北京理工大学前沿交叉科学研究院,北京 100081
3 西安交通大学能源与动力工程学院,西安 710049
4 中国原子能科学研究院反应堆工程技术研究部,北京 102413
Advances in Experimental Research on Irradiation Damage of High-entropy Alloys
JIN Ke1,2, LU Chenyang3, DOU Yankun4, HE Xinfu4, YANG Wen4
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Advance Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
3 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
4 Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 12779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 尽管人们在半个世纪前就已经在Fe-Cr-Ni体系中发现主元浓度的改变对合金的抗辐照肿胀性能有重要影响,但在很长一段时间内未能系统深入地理解其中的物理机制,也未能据此形成依托主元调控的体系化的抗辐照合金设计方法。高熵合金的出现和发展拓展了抗辐照材料的设计空间,同时也为系统研究合金主元对辐照损伤的影响机制提供了理想的平台。近年来,针对高熵合金开展了一系列载能粒子(包括电子、离子和中子)辐照实验,力图揭示辐照下主元特征(包括数目、种类和浓度等)对合金微观结构和性能演化的影响。现有结果表明,通过调控辐照下的能量耗散过程以及缺陷的形成能和迁移能,化学复杂度较高的合金中辐照缺陷演化在总体趋势上有所减缓,尤其是间隙原子型缺陷团簇尺寸下降,在高温辐照下对孔洞以及氦泡的形成也有所抑制。尽管已有实验证据表明,通过适当的主元调控可以在保持合金组织结构的情况下提升其抗辐照性能,但是必须指出,不同主元组合和结构的高熵合金在不同辐照条件(温度、剂量、粒子种类)下的稳定性、肿胀及力学性能演化有着较大的乃至定性上的差异,因此目前并不能简单地得出高熵合金在整体上是否具有更好的抗辐照性能的结论。本文回顾并整理了关于高熵合金辐照损伤方面的主要实验研究进展,总结了当前对合金辐照损伤主元效应的理解以及对高熵合金抗辐照性能的评价,讨论了现有研究的局限以及尚未理解的实验现象,并对后续高熵合金辐照损伤研究及抗辐照高熵合金设计进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳柯
卢晨阳
豆艳坤
贺新福
杨文
关键词:  高熵合金  多主元合金  辐照损伤  核用结构材料    
Abstract: Long before the proposal of the concept of high-entropy alloy, researchers have observed the strong dependence of ion irradiation induced swelling on the concentration of principal elements in the Fe-Cr-Ni alloy system in 1970s. Nonetheless, the underlying physics of such dependence was not systematically investigated, and principal elements were rarely targeted in design of irradiation resistant alloys, until the recent development of high-entropy alloys. This new family of alloys greatly expands the compositional space for alloy design, and provides an ideal playground of studying the impact of principal alloy elements on the irradiation response. In the recent years, significant experimental effort has been made to understand the impact of number, type, and concentration of alloying elements on the irradiation (by ions, electrons, and neutrons) induced microstructural evolution and property degradation. The up-to-date results have revealed that, defect evolution process is retarded in the alloys with high chemical complexity, through tuning the energy dissipation and the defect formation and migration energies. For example, the size of interstitial clusters is reduced, and the formation and growth of voids and helium bubbles are suppressed. It has been evidenced that proper modification of principal elements can indeed improve the irradiation resistance of alloys, however, considerable discrepancies have also been observed regarding the irradiation-induced phase instability, swelling, and hardening for different alloy systems and irradiation conditions. Therefore, a conclusive evaluation cannot be made on whether the irradiation resistance of high-entropy alloys is overall superior. We review the major progress in experimental studies on irradiation effects of high-entropy alloys, and summarize the current understanding and evaluation of the irradiation resistance. The limitations or contradictions of experimental results are discussed, and perspectives are provided for the future studies in this field.
Key words:  high-entropy alloy    multiprincipal element alloy    irradiation effect    nuclear structural materials
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TL34  
基金资助: 国家财政部稳定支持研究项目(WDJC-2019-10);国防科技工业核材料技术创新中心项目(ICNM-2020-ZH-05)
通讯作者:  jinke@bit.edu.cn   
作者简介:  靳柯,北京理工大学教授、博士研究生导师。2010年本科毕业于北京大学物理学院,2011年硕士毕业于美国佛罗里达大学材料科学与工程系,2015年博士毕业于美国田纳西大学材料科学与工程系。2015—2018年于美国橡树岭国家实验室进行博士后研究工作。2018年6月回国后,入选国家“海外高层次人才引进计划”青年项目。主要从事离子与固体相互作用、材料辐照损伤和新型抗辐照材料研发、离子束技术等方面的研究工作。近年来在Acta Mater., J. Nucl. Mater., Nat. Commun.等期刊上发表论文50余篇,其中一作/通讯17篇。
卢晨阳,西安交通大学核科学与技术学院教授、博士研究生导师,入选国家“海外高层次人才引进计划“青年项目。2014年毕业于东北大学获材料学博士学位,2014—2018年在密西根大学核工程与放射科学系先后从事博士后和助理研究员工作,于2018年底全职加入西安交通大学。主要研究方向包括先进核结构材料制备、材料中的辐照损伤,以及材料微观结构的先进表征手段等。共发表SCI论文40余篇,其中包括4篇Nature Communications,4篇Acta Materialia,11篇Journal of Nuclear Materials及其他多篇具有领域影响力的相关论文,文章总引用1 400余次,H因子19。2013年在电子显微镜和电子显微分析国际大会上获得美国显微镜学会颁发的总统学者奖。
贺新福,中国原子能科学研究院副研究员。首届中核集团“青年科技英才”,《核科学与工程》编委。主要从事反应堆材料辐照效应多尺度模拟及高性能计算技术研究。近5年作为项目负责人主持863课题1项、重点研发计划课题1项、核技术创新联合基金重点项目1项、国家财政部稳定基础科研课题1项、中核集团“菁英项目”和“领创项目”各1项。发表论文30余篇,获软件著作权4项,发明专利2项,申请专利4项;国防科学技术三等奖1项,中核集团科学技术奖二等奖1项,中国原子能科学研究院科技成果奖一等奖3项。
引用本文:    
靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
JIN Ke, LU Chenyang, DOU Yankun, HE Xinfu, YANG Wen. Advances in Experimental Research on Irradiation Damage of High-entropy Alloys. Materials Reports, 2020, 34(17): 17018-17030.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040078  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17018
1 Zinkle S J, Busby J T. Materials Today, 2009, 12(11), 12.
2 Was G S. Fundamentals of radiation materials science: metals and alloys, Springer, German, USA, 2007.
3 Zinkle S J, Snead L L. Annual Review of Materials Research, 2014, 44(1), 241.
4 Zhang X, Hattar K, Chen Y, et al. Progress in Materials Science, 2018, 96, 217.
5 Ukai S, Fujiwara M. Journal of Nuclear Materials, 2002, 307-311, 749.
6 Yeh J W, Chen S K, Lin S J, et al. Advanced Engeering Materials, 2004, 6(5), 299.
7 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
8 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
9 Zhang W, Liaw P K, Zhang Y. Science China Materials, 2018, 61(1), 2.
10 Zinkle S J. Structural materials for generation IV nuclear reactors, Yvon P, ed., Elsevier, Netherlands, 2017.
11 Gludovatz B, Hohenwarter A, Thurston K V, et al. Nature Communications, 2016, 7, 10602.
12 Johnston W G, Rosolowski J H, Turkalo A M, et al. Journal of Nuclear Materials, 1974, 54(1), 24.
13 Garner F A. Materials science and technology, Frost B R T, ed. VCH Publishers, USA, 1994.
14 Wang L M, Dodd R A, Kulcinski G L. Journal of Nuclear Materials, 1988, 155-157, 1241.
15 Wang L M, Zinkle S J, Dodd R A, et al. Metallurgical Transactions A, 1990, 21A, 1847.
16 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2012, 26, 122.
17 Egami T, Guo W, Rack P D, et al. Metallurgical and Materials Transactions A, 2013, 45(1), 180.
18 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2013, 38, 70.
19 Nagase T, Rack P D, Noh J H, et al. Intermetallics, 2015, 59, 32.
20 Wu Z, Bei H, Otto F, et al. Intermetallics, 2014, 46, 131.
21 Zhang Y, Stocks G M, Jin K, et al. Nature Communications, 2015, 6, 8736.
22 Zhang Y, Jin K, Xue H, et al. Journal of Materials Research, 2016, 31(16), 2363.
23 Jin K, Bei H, Zhang Y. Journal of Nuclear Materials, 2016, 471, 193.
24 Lu C, Jin K, Beland L K, et al. Scientific Reports, 2016, 6, 19994.
25 Granberg F, Nordlund K, Ullah M W, et al. Physical Review Letters, 2016, 116(13), 135504.
26 Velisa G, Jin K, Fan Z, et al. Journal of Nuclear Materials, 2019, 525, 92.
27 Velişa G, Wendler E, Zhao S, et al. Materials Research Letters, 2017, 6(2), 136.
28 Velişa G, Ullah M W, Xue H, et al. Acta Materialia, 2017, 135, 54.
29 Jin K, Guo W, Lu C, et al. Acta Materialia, 2016, 121, 365.
30 Jin K, Sales B C, Stocks G M, et al. Scientific Reports, 2016, 6, 20159.
31 Jin K, Mu S, An K, et al. Materials and Design, 2017, 117(5), 185.
32 Jin K, Zhang C, Zhang F, et al. Materials Research Letters, 2018, 6(5), 293.
33 Zhao S, Egami T, Stocks G M, et al. Physical Review Materials, 2018, 2(1), 013602.
34 Zhao S, Weber W J, Zhang Y. JOM, 2017, 69(11), 2084.
35 Jin K, Bei H. Frontiers in Materials, DOI: 10.3389/fmats.2018.00026.
36 Wang Xing, Christopher M Barr, Jin Ke, et al. Journal of Nuclear Materials, 2019, 523, 502.
37 Lu C, Niu L, Chen N, et al. Nature Communications, 2016, 7, 13564.
38 Yang T N, Lu C, Jin K, et al. Journal of Nuclear Materials, 2017, 488, 328.
39 Yang T N, Lu C, Velisa G, et al. Acta Materialia, 2018, 151, 159.
40 Lu C, Yang T N, Jin K, et al. Journal of Nuclear Materials, 2019, 524, 60.
41 Lu Chenyang, Yang Taini, Niu Liangliang, et al. Journal of Nuclear Materials, 2018, 509, 237.
42 He M R, Wang S, Jin K, et al. Scripta Materialia, 2016, 125, 5.
43 He M R, Wang S, Jin K, et al. Scripta Materialia, 2019, 166, 96.
44 Shi S, He M R, Jin K, et al. Journal of Nuclear Materials, 2018, 501, 132.
45 Lu C, Yang T, Jin K, et al. Acta Materialia, 2017, 127, 98.
46 Kumar N A P K, Li C, Leonard K J, et al. Acta Materialia, 2016, 113, 230.
47 Chen W Y, Liu X, Chen Y, et al. Journal of Nuclear Materials, 2018, 510, 421.
48 Yang T, Xia S, Guo W, et al. Scripta Materialia, 2018, 144, 31.
49 Yang T N, Lu C, Velisa G, et al. Scripta Materialia, 2019, 158, 57.
50 Wang X, Jin K, Chen D, et al. Materialia, 2018, 5, 100183.
51 Wang X, Jin K, Chen D, et al. Microscopy and Microanalysis, 2019, 25, 1558.
52 Chen D, Tong Y, Li H, et al. Journal of Nuclear Materials, 2018, 501, 208.
53 Chen D, Zhao S, Sun J, et al. Journal of Nuclear Materials, 2019, 526, 151747.
54 Tunesa M A, Le H, Greaves G, et al. Intermetallics, 2019, 110, 106461.
55 Yan Z, Liu S, Xia S, et al. Journal of Nuclear Materials, 2018, 505, 200.
56 Yang L, Ge H, Zhang J, et al. Journal of Materials Science and Technology, 2019, 35, 300.
57 Harrison R W, Greaves G, Le H, et al. Current Opinion in Solid State and Materials, 2019, 23, 100762.
58 Zhang Y, Wang X, Osetsky Y N, et al. Acta Materialia, 2019, 181, 519.
59 Yang T, Xia S, Liu S, et al. Scientific Reports, 2016, 6, 32146.
60 Xia S, Gao M C, Yang T, et al. Journal of Nuclear Materials, 2016, 480, 100.
61 Abhaya S, Rajaraman R, Kalavathi S, et al. Journal of Alloys and Compounds, 2016, 669, 117.
62 Zhang F X, Tong Y, Velisa G, et al. Journal of Physics: Condensed Matter, 2020, 32, 074002.
63 Tong Y, Velisa G, Zhao S, et al. Materialia, 2018, 2, 73.
64 Kombaiah B, Jin K, Bei H, et al. Materials and Design, 2018, 160, 1208.
65 He M R, Wang S, Shi S, et al. Acta Materialia, 2017, 126, 182.
66 Barr C M, II J E N, Unocic K A, et al. Scripta Materialia, 2018, 156, 80.
67 Fan Z, Yang T N, Kombaiah B, et al. Materialia, 2020, 9, 100603.
68 Jin K, Lu C, Wang L M, et al. Scripta Materialia, 2016, 119, 65.
69 Jawaharram G S, Barr C, Monterrosa A M, et al. Acta Materialia, 2020, 182, 68.
70 Li C, Hu X, Yang T, et al. Journal of Nuclear Materials, 2019, 527, 151838.
71 Lu Y, Huang H, Gao X, et al. Journal of Materials Science and Technology, 2019, 35(3), 369.
72 Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Journal of Nuclear Materials, 2020, 529, 151955.
73 Moschetti M, Xu A, Schuh B, et al. JOM, 2019, 72, 130.
74 King D J M, Cheung S T Y, Humphry-Baker S A, et al. Acta Materialia, 2019, 166, 435.
75 Ayyagari A, Salloom R, Muskeri S, et al. Materialia, 2018, 4, 99.
76 Kareer A, Waite J C, Li B, et al. Journal of Nuclear Materials, 2019, 526, 151744.
77 Jia N, Li Y, Liu X, et al. JOM, 2019, 71(10), 3490.
78 Lu C, Yang T, Jin K, et al. Materials Research Letters, 2018, 6, 584.
79 Zhang Y, Tunes M A, Crespillo M L, et al. Nanotechnology, 2019, 30, 29.
80 El-Atwani O, Li N, Li M, et al. Science Advances, 2019, 5(3), eaav2002.
[1] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[2] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[3] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[4] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[5] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[6] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[7] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[8] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[9] 田梦云, 吴长军, 刘亚, 彭浩平, 王建华, 苏旭平. CoxMn2-xCrFeNi高熵合金的相稳定性[J]. 材料导报, 2020, 34(17): 17067-17071.
[10] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
[11] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[12] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[13] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[14] 肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
[15] 沈利华, 杨晓芳. 基于文献计量分析的高熵合金研究进展[J]. 材料导报, 2020, 34(11): 11171-11178.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed