Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11076-11080    https://doi.org/10.11896/cldb.19080182
  材料与可持续发展(二)——材料绿色制造与加工 |
3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能
刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明
南方科技大学材料科学与工程系,深圳 518055
3D Printed CoCrFeMnNi High-entropy Alloy: Microstructure and Mechanical Properties at Room and Cryogenic Temperatures
LIU Guang, ZHOU Suyuan, YANG Haiwei, CHEN Peng, OUYANG Xiao, YAN Ming
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055,China
下载:  全 文 ( PDF ) ( 4578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金由于其独特的微观结构、优异的性能及潜在的应用价值,近年来受到广泛关注,是一种重要的新型金属材料。本研究通过选区激光熔化技术制备CoCrFeMnNi高熵合金,并对所打印试样的物相组成、显微组织、常温及低温力学性能进行了系统分析与表征。通过优化打印参数,最终得到了具有高相对致密度、优异的常温及低温拉伸性能的试样,其抗拉强度分别达到647 MPa (298 K)和893.8 MPa (77 K)。本研究验证了选区激光熔化制备的CoCrFeMnNi高熵合金的强度和塑性均随着温度的降低而升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘广
周溯源
杨海威
陈鹏
欧阳潇
严明
关键词:  高熵合金  CoCrFeMnNi  选区激光熔化  低温性能  增材制造    
Abstract: High-entropy alloys (HEAs) have been considered as a new class of metallic alloys famous for their unique microstructures, comprehensive performances and wide applications. In this study,selective laser melting technology has been utilized to fabricate CoCrFeMnNi HEA. Phases, microstructure and mechanical properties of the as-built specimens at both room and cryogenic temperatures were investigated. The optimized printing parameters and the high relative density alloy with excellent tensile properties were derived. The tensile strength was 647 MPa at room temperature and 893.8 MPa at cryogenic temperature, respectively, demonstrating good combination of strength and ductility at cryogenic temperature.
Key words:  high-entropy alloy    CoCrFeMnNi    selective laser melting    cryogenic mechanical properties    additive manufacturing
                    发布日期:  2020-05-13
ZTFLH:  TB383  
基金资助: 深圳市科创委学科布局(JCYJ20180504165824643; JCYJ20170817111811303)
通讯作者:  yanm@sustech.edu.cn   
作者简介:  刘广,南方科技大学与哈尔滨工业大学联合培养,材料科学与工程系硕士研究生,在严明副教授的指导下进行研究。主要研究领域为高熵合金的增材制造。
严明博士毕业于哈尔滨工业大学。他于2014年12月加入南方科技大学。曾以澳大利亚国家博士后、昆士兰州青年学者等职位在澳大利亚昆士兰大学、日本国立材料研究所工作,近年亦获得了“洪堡学者”的资助。他在南方科技大学的课题组以金属材料的3D打印&增材制造研究为主。严明博士共有约120篇国际期刊论文、英文书籍章节发表。
引用本文:    
刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
LIU Guang, ZHOU Suyuan, YANG Haiwei, CHEN Peng, OUYANG Xiao, YAN Ming. 3D Printed CoCrFeMnNi High-entropy Alloy: Microstructure and Mechanical Properties at Room and Cryogenic Temperatures. Materials Reports, 2020, 34(11): 11076-11080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080182  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11076
1 Yeh J W,Chen S K,Lin S J,et al.Advanced Engineering Materials, 2004, 6(5), 300.
2 Zhang Y, Zuo T T, Tang Z,et al. Progress in Materials Science, 2014, 61, 3.
3 Wang Y, Yan M, Zhu Qiang, et al.Acta Materialia, 2018, 143, 90.
4 Bu Y H.Information Recording Materials, 2019, 20(5), 2(in Chinese).
卜颖宏.信息记录材料, 2019, 20(5), 2.
5 Miracle D B,Senkov O N.Acta Materialis, 2017, 122, 450.
6 Liu Y, Li Y X, Chen X, et al.Materials Reports, 2006, 20(4), 5(in Chinese).
刘源, 李言祥, 陈祥, 等. 材料导报, 2006, 20(4), 5.
7 Cheng C Y,Yang T C,Zhong Y Z,et al.Current Opinion in Solid State and Materials Science, 2017, 21, 310.
8 Otto F,Yang Y,Bei H,et al. Acta Materialia, 2013, 61, 2630.
9 Gali A, George E P.Intermetallics,2013, 39, 77.
10 Gludovatz B, Hohenwarter A, Catoor D,et al. Science, 2014, 345(6201), 1154.
11 Jang M J, Praveen S, Sung H J,et al. Journal of Alloys and Compounds, 2018, 730, 243.
12 Wang D W, Zhou Y H, Shen J, et al. Materials Science & Engineering A, 2019, 762.
13 Zhou R, Liu Y, Zhou C S, et al.Intermetallics, 2018, 94, 165.
14 Zhou Y H, Li W P, Wang D W, et al.Acta Materialis, 2019, 173, 119.
15 Tian J, Huang Z H, Qi W J, et al.Materials Reports, 2017, 31(Z1), 90(in Chinese).
田杰, 黄正华, 戚文军, 等. 材料导报, 2017, 31(专辑29), 90.
16 Zhou Y H, Zhang Z H, Wang Y P, et al.Additive Manufacturing, 2019, 25, 206.
17 Li Y L, Zhou K, Tan P F, et al.International Journal of Mechanical Sciences, 2018, 136, 25.
18 Kunce I, Polanski M, Karczewski K, et al.Journal of Alloys and Compounds, 2015, 648, 755.
19 Zeng G H, Song T, Dai Y H, et al.Materials & Design, 2019, 169, 107693.
20 Li R, Niu P D, Yuan T C, et al.Journal of Alloys and Compounds, 2018, 746, 126.
21 Brif Y, Thomas M, Todd I.Scripta Materialia, 2015, 99, 95.
22 Xu Y Y, Sun K, Zou Z Q, et al.Journal of Xi'an Jiaotong University, 2018, 52(1), 156(in Chinese).
徐勇勇, 孙琨, 邹增琪, 等. 西安交通大学学报, 2018, 52(1), 156.
23 Zhang H, Xu W, Xu Y J, et al.International Journal of Advanced Manufacturing Technology, 2018, 96, 462.
24 Zhu Z G, Nguyen Q B, Ng F L, et al.Scripta Materialia, 2018, 154, 23.
25 Yan J J, Li H X, Jia X, et al.Journal of Materials Science, 2017, 52(20), 12481.
26 Gu D D, Hagedorn Y C, Meiners W, et al.Acta Materialia, 2012, 60, 3851.
27 Matthews M J, Guss G, Khairallah S A, et al.Acta Materialia, 2016, 114, 38.
28 Hu R Z, Pang S Y, Chen X, et al.International Journal of Heat and Mass Transfer, 2017, 115, 260.
29 Laurent-Brocq M, Akhatova Alfiya, Perriere Loic, et al.Acta Materialia, 2015, 88, 357.
30 Gao X Y, Lu Y Z.Materials Letters, 2019, 236, 79.
31 Li A M, Shi J Z, Xie M K.Materials Reports A:Review Papers, 2018, 32(2),463(in Chinese).
李安敏, 史君佐, 谢明款. 材料导报:综述篇, 2018, 32(2), 463.
32 Otto F, Dlouhy A, Somsen C H, et al.Acta Materialia, 2013, 61, 5746.
33 Eiβmann N, Kloden B, Kieback B, et al. Powder Metallurgy, 2017, 60(3), 193.
34 Wang P, Huang P F, Ng F L, et al.Materials and Design, 2019, 168, 10.
35 Xiang S, Luan H W, Wu J, et al.Journal of Alloys and Compounds, 2019, 773, 391.
36 Singh A, Tang L,Dao M, et al.Acta Materialia, 2011, 59, 2437.
37 Lee K J, Chun M S, Kim M H, et al.Computational Materials Science, 2009, 46, 1155.
[1] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[2] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[3] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[4] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[5] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[6] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[7] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[8] 沈利华, 杨晓芳. 基于文献计量分析的高熵合金研究进展[J]. 材料导报, 2020, 34(11): 11171-11178.
[9] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[10] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[11] 杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望[J]. 材料导报, 2019, 33(Z2): 348-355.
[12] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[13] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed