Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6114-6119    https://doi.org/10.11896/cldb.19040058
  金属与金属基复合材料 |
特殊粒径分布球形Ni粉的制备及SLM工艺性能研究
张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁
北京工业大学材料科学与工程学院,新型功能材料教育部重点实验室,北京 100124
Preparation and Performance of Spherical Ni Powder with Special Particle Size Distribution for SLM Processing
ZHANG Yajuan, LI Yanan, SONG Xiaoyan, WANG Haibin, HOU Chao, NIE Zuoren
Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印复杂三维结构的Ni基合金时表面易产生突起而粗糙,难以获得致密的打印组织。基于此,本研究采用低温喷雾干燥与热处理相结合的新方法,制备得到了物相纯净、球形度高、流动性好的具有粒径单峰和双峰分布的两种选区激光熔化(SLM)用球形Ni粉。结果表明:粒径双峰分布的Ni粉具有更大的比表面积和更高的堆积密度以及更高的导热系数;在打印过程中,可以吸收更多的激光能量形成更宽的致密熔道,无球化现象;粒径单峰分布的Ni粉打印件表面有少量球化颗粒和微裂纹生成,硬度和模量随压入深度的增加而逐渐下降;粒径双峰分布的Ni粉打印件的相对密度达到99.8%,硬度和模量随压入深度的增加而趋于稳定,其塑性较粒径单峰分布Ni粉打印件提高了30%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亚娟
李亚楠
宋晓艳
王海滨
侯超
聂祚仁
关键词:  选区激光熔化  粒径双峰分布  松装密度  导热系数    
Abstract: Based on the technical characteristics of selective laser melting (SLM), a novel method combining low temperature spray-drying with heat treatment was developed, and two kinds of Ni powders with single-peak and bimodal distribution of particle size, high purity, good sphericity, high flowability were prepared. It is found that the Ni powder with bimodal particle size distribution has higher specific surface area and apparent density, leading to absorb more laser energy and higher thermal conductivity. As a result, wider melting channels were formed in the printing process and the spheroidization phenomenon was eliminated. However, a small amount of spheroidization particles and micro cracks occurred on the surface of the printed bulk material prepared by the Ni powder with single-peak distribution of particle size, exhibiting decreased hardness and modulus with the increasing indentation depth and poor mechanical properties. The relative density is achieved as 99.8% at the printed bulk material prepared by the Ni powder with bimodal distribution of particle size and the hardness and modulus tend to be a stable value with increasing indentation depth. In addition, its plasticity increased by 30% than that of the printed bulk material prepared by the Ni powder with single-peak distribution of particle size.
Key words:  selective laser melting    bimodal particle size distribution    apparent density    thermal conductivity
                    发布日期:  2020-03-12
ZTFLH:  TG123  
基金资助: 国家自然科学基金创新研究群体资助项目(51621003)
作者简介:  张亚娟,北京工业大学,材料科学与工程学院,在读博士研究生,主要从事金属粉末冶金新材料方向的研究;宋晓艳,北京工业大学教授,国家杰出青年科学基金获得者,教育部长江学者特聘教授。主要研究方向:金属纳米材料、硬质合金与计算材料学。
引用本文:    
张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
ZHANG Yajuan, LI Yanan, SONG Xiaoyan, WANG Haibin, HOU Chao, NIE Zuoren. Preparation and Performance of Spherical Ni Powder with Special Particle Size Distribution for SLM Processing. Materials Reports, 2020, 34(6): 6114-6119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040058  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6114
1 Suwanprateeb J, Sanngam R, Panyathanmaporn T. Materials Science & Engineering: C, 2010, 30 (4), 610.
2 Averyanovaa M, Bertranda P, Verquinb B.Virtual and Physical Prototyping, 2011, 6 (4), 215.
3 ASTM International. F3049-14, standard guide for characterizing properties of metal powders used for additive manufacturing processes,2014.
4 Yang D Y, Peng H X, Fu Y Q, et al. Nanoscience & Nanotechnology Letters, 2015, 7 (7),603.
5 Liu F C, Lin X, Yang G L, et al. Optics and Laser Technology, 2011, 43 (1), 208.
6 Kempen K, Yasa E, Thijs L, et al. Physics Procedia, 2011, 12 (Part A),255.
7 Zhao X M, Lin X, Chen J, et al. Materials Science and Engineering: A, 2009, 504 (1),129.
8 Zhang J F. Study on direct selective laser sintering of Ni-based metallic powder and key technologies. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2002 (in Chinese).
张剑峰. Ni基金属粉末激光直接烧结成形及关键技术研究. 博士学位论文, 南京航空航天大学, 2002.
9 King W E, Anderson A T, Ferencz R M, et al. Applied Physics Reviews, 2015, 2 (4),41304.
10 Yadroitsev I, Gusarov A, Yadroitsava I, et al.Journal of Materials Processing Technology, 2010, 210 (12),1624.
11 Olakanmi E O, Cochrane R F, Dalgarno K W. Progress in Materials Science, 2015, 74,401.
12 Lanzetta M, Sachs E.Rapid Prototyping Journal, 2003, 9 (3),157.
13 Anderson I E, Terpstra R L.Materials Science & Engineering A, 2002, 326 (1), 101.
14 Cooke A, Slotwinski J.Properties of metal powders for additive manufactu-ring: A review of the state of the art of metal powder property testing, National Institute of Standards and Technology Press, US, 2012.
15 Clayton J Deffley R.Metal Powder Report, 2014, 69 (5),14.
16 张冬云, 董东东, 汪承杰, 等. 中国专利, CN105478765A,2016.
17 Liang H, Shinohara K, Minoshima H, et al. Chemical Engineering Science, 2001, 56 (6), 2205.
18 Harrison N J, Todd I, Mumtaz K. Acta Materialia, 2015, 94, 59.
19 Olakanmi E O. Journal of Materials Processing Technology, 2013, 213 (8),1387.
20 Maji K, Pratihar D K, Nath A K. Soft Computing, 2013, 17 (5), 849.
21 Gu C L. Research on heat conduction and friction of HVC powder based on fractal theory. Master's Thesis, Central South University, China, 2008 (in Chinese).
谷成玲. 基于分形理论的HVC粉末热传导及摩擦力的研究. 硕士学位论文, 中南大学, 2008.
22 Liu D Y, Chen X P, Lu L Y, et al. Journal of the Chemical Industry and Engineering Society of China, 2009 (9), 2183 (in Chinese).
刘道银, 陈晓平, 陆利烨, 等. 化工学报, 2009, 60 (9),2183.
23 Dressler M, Röllig M, Schmidt M, et al. Rapid Prototyping Journal, 2010, 16 (5), 328.
24 Zhang Y J, Wang H B, Song X Y, et al. Acta Metallurgica Sinica, 2018, 54 (12),1833 (in Chinese).
张亚娟, 王海滨, 宋晓艳, 等.金属学报, 2018, 54 (12), 1833.
25 Dao M, Chollacoop N, Vliet K J V, et al.Acta Materialia, 2001, 49 (19), 3899.
[1] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[2] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[5] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[6] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 叶寒, 张坚强, 黄俊强, 刘勇. 选区激光熔化WC/AlSi10Mg复合材料的微观组织和疲劳性能[J]. 材料导报, 2019, 33(22): 3789-3794.
[9] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[10] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[11] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[12] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[13] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[14] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[15] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed