Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3815-3819    https://doi.org/10.11896/cldb.19010007
  高分子与聚合物基复合材料 |
利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能
王博1,朱孝钦1,,胡劲2,常静华1,陈洋1,史杰1
1 昆明理工大学化学工程学院,昆明 650500
2 昆明理工大学材料科学与工程学院,昆明 650500
Nano-graphite Enhanced Thermal Conductivity of Decanoic Acid-Tetradecyl Alcohol Composite Phase Change Material
WANG Bo1, ZHU Xiaoqin1, HU Jin2, CHANG Jinghua1, CHEN Yang1, SHI Jie1
1 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500
2 Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1858KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 作为常用的有机相变材料,脂肪酸具有循环熔融/结晶稳定的热性能以及无毒、无腐蚀性等优点,但脂肪酸体系的导热系数(0.1~0.3 W·m-1·K-1)低,限制了它的工业应用范围。为了提高正癸酸(CA)-十四醇(TA)复合相变材料的导热性能,本实验选用CA与TA物质的量比为7∶3的复合相变材料为基液,通过添加不同质量分数的纳米石墨制备出正癸酸-十四醇/纳米石墨复合相变材料体系。研究发现,当添加纳米石墨的质量分数为0.1%~0.9%时,能形成较为稳定的悬浮液。通过SEM、DSC和Hot Disk导热系数测定仪对复合材料的主要热物理性能进行表征,分析结果表明,正癸酸-十四醇/纳米石墨复合相变材料的导热系数相对原基液有较大幅度的提高,而相变潜热和相变温度没有太大变化。当添加纳米石墨的质量分数为0.6%时,所制备的正癸酸-十四醇/纳米石墨复合相变材料的综合性能最佳,其固态和液态导热系数分别提高了39.5%、35.2%,相变温度和相变潜热分别为20.42 ℃、154.25 kJ/kg,并且具有良好的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博
朱孝钦
胡劲
常静华
陈洋
史杰
关键词:  纳米石墨  正癸酸(CA)-十四醇(TA)  复合相变材料  导热系数  热稳定性    
Abstract: As a common organic phase change material, fatty acids show advantages of cyclic melting/crystallization stable thermal properties, non-to-xicity, non-corrosiveness etc. Nevertheless, the low thermal conductivity coefficient of fatty acid systems (0.1—0.3 W·m-1·K-1) blocks their widespread industrial applications. For the sake of improving the thermal conductivity of decanoic acid (CA)-tetradecyl alcohol (TA) composite phase change material, composite phase change material matrix with CA and TA molar ratio of 7∶3 was selected, and nano-graphite with diverse mass fractions was added to prepare decanoic acid-tetradecyl/nano-graphite composite phase change material system. It was discovered that, a relatively stable suspension could be achieved when the added mass fraction of nano-graphite was 0.1%—0.9%. SEM, DSC and Hot Disk were employed to characterize the main thermophysical properties of the obtained composite phase change material. As can be seen from the analysis results, decanoic acid-tetradecyl/nano-graphite composite phase change material showed a substantial increase of the thermal conductivity coefficient while its phase change temperatures and latent heats maintained almost unchanged compared to the matrix. The decanoic acid-tetradecyl alcohol/nano-graphite composite phase change material with nano-graphite mass fraction of 0.6% presented optimal comprehensive property, showing 39.5% and 35.2% increase in its thermal conductivity coefficients of solid and liquid states, and its phase change tempera-ture and latent heat were 20.42 ℃ and 154.25 kJ/kg, respectively, indicating a satisfactory thermal stability.
Key words:  nano-graphite    decanoic acid-tetradecyl alcohol    composite phase change material    thermal conductivity coefficient    thermal stabi-lity
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51066001)
作者简介:  王博,昆明理工大学化学工程学院在读硕士研究生,主要从事相变材料制备、能源技术与工程的研究。
朱孝钦,昆明理工大学化学工程学院教授,材料学博士,主要从事固体废弃物资源化、能源技术与工程的研究,重点研究利用固体废弃物和相变材料在建筑节能等领域的应用。
引用本文:    
王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
WANG Bo, ZHU Xiaoqin, HU Jin, CHANG Jinghua, CHEN Yang, SHI Jie. Nano-graphite Enhanced Thermal Conductivity of Decanoic Acid-Tetradecyl Alcohol Composite Phase Change Material. Materials Reports, 2019, 33(22): 3815-3819.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010007  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3815
[1] Shi W, Wang C T. Bulletin of the Chinese Ceramic Society, 2015, 34(12),3517(in Chinese).史巍,王传涛. 硅酸盐通报,2015,34(12),3517.
[2] Sari A. Energy Conversion and Management, 2003, 44,2277.
[3] Sari A, Kaygusuz K. Renewable Energy, 2003, 28,939.
[4] Choi S U S, Eastman J A. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition. New York, USA, 1995, pp. 99.
[5] Huang Y, Zhang X L. CIESC Journal, 2016,67(6),2271(in Chinese).黄艳,章学来. 化工学报, 2016,67(6),2271.
[6] Chen Y F, Zhang X L, Ding J H, et al. Journal of Refrigeration, 2017, 38(5),41(in Chinese).陈裕丰,章学来,丁锦宏,等. 制冷学报,2017,38(5),41.
[7] Pang J S, Zhang H Y, Cao B, et al. Materials Review, 2009, 23(S1),168(in Chinese).庞晋山,张海燕,曹标,等. 材料导报,2009,23(专辑13),168.
[8] Li X P, Si Y S. Physical chemistry, Yunnan University Press, China, 2006(in Chinese).李西平,司云森. 物理化学,云南大学出版社,2006.
[9] Xi L X. Jin X J. Hot Working Technology, 2012,41(14),5(in Chinese).席丽霞,金学军. 热加工工艺,2012,41(14),5.
[1] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[2] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[3] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[4] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[9] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[10] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[11] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[12] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[13] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[14] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[15] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed