Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1652-1658    https://doi.org/10.11896/cldb.18020147
  无机金属及其复合材料 |
轻质保温高延性水泥基复合材料的拉伸性能与耐久性能
丁聪1, 郭丽萍1,2,3, 雷东移1, 徐燕慧1, 朱玉1, 邓忠华4
1 东南大学材料科学与工程学院,南京211189
2 东南大学江苏省土木工程材料重点实验室,南京211189
3 东南大学江苏省先进土木工程材料协同创新中心,南京211189
4 永安市宝华林实业发展有限公司,永安366000
Preparation and Critical Performances of Lightweight Insulation High Ductility Cementitious Composites
DING Cong1, GUO Liping1,2,3, LEI Dongyi1, XU Yanhui1, ZHU Yu1, DENG Zhonghua4
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189
2 Jiangsu Key Laboratory of Construction Materials, Nanjing 211189
3 Collaborative Innovation Center for Advanced Civil Engineering Materials, Nanjing 211189
4 Baohua Lin Industrial Development Co., Ltd., Yongan 366000
下载:  全 文 ( PDF ) ( 10158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用引气剂与PVA纤维制备出密度等级为A10、强度等级达C20的轻质保温高延性水泥基复合材料(LIHDCC),并研究了不同纤维体积掺量时LIHDCC的基本力学性能、导热性能、单轴拉伸性能、纤维/基体界面粘结性能、抗冻性能、抗氯离子渗透性能及其孔结构。结果表明,纤维体积掺量为1.5%和2.0%的LIHDCC的抗压强度均可以达到C20;导热系数分别为0.08 W/(m·K)和0.10 W/(m·K);极限拉伸应变分别为0.72%和0.85%;纤维在基体中的平均化学粘结力为6.92 J/m2,摩擦应力和滑移硬化系数分别为1.25 MPa和0.42;LIHDCC具有较好的抗氯离子渗透性能及抗冻融能力;通过X射线层析扫描(X-CT)技术对LIHDCC孔径大小与孔的分布进行分析,引气剂引入的气泡分布均匀,气泡平均直径在0~1 mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁聪
郭丽萍
雷东移
徐燕慧
朱玉
邓忠华
关键词:  轻质保温  延性  导热系数  抗渗  抗冻融  孔结构分析    
Abstract: Lightweight insulation and high ductility cementitious composites (LIHDCC), which density grade reach A10 and strength grade reach C20, were prepared in this study. Mechanical properties, thermal conductivity, uniaxial tensile properties, fiber/matrix interface bonding properties, frost resistance, chloride ion penetration resistance and pore structure were studied. The volume fractions of PVA fiber were 1.5% and 2%. The results showed that the compressive strength decreases with the increase of fiber content, but all could reach C20. The thermal conductivity reached 0.08 W/(m·K) and 0.10 W/(m·K), the ultimate tensile strain reached 0.72% and 0.85%. The average chemical bonding force of single fiber was 6.92 J/m2, the frictional force and slip hardening coefficient were 1.25 MPa and 0.42, respectively. LIHDCC have good resistance for chloride ion penetration and freezing thawing. Finally, the pore structure of LIHDCC was analyzed by CT. The average diameter of the evenly distributed bubbles was about 0—1 mm.
Key words:  lightweight    insulation    ductility    thermal conductivity    impermeability    freeze-thaw    pore analysis
               出版日期:  2019-05-25      发布日期:  2019-05-16
ZTFLH:  TU55  
基金资助: 国家重点研发计划(2016YFC0401610);国家自然科学基金(51378113;51778133); 国家重点基础研究发展计划(973计划)(2015CB655102);江苏省六大人才高峰计划(JZ-004)
通讯作者:  guoliping691@163.com   
作者简介:  丁聪,东南大学材料科学与工程学院,博士生,主要从事高延性水泥基复合材料领域的研究。郭丽萍,东南大学副教授、博导,入选2015年度江苏省第十二批“六大人才高峰”项目、2018年度江苏省第五期“333工程”第三层次人才。2002年9月至2008年6月,在东南大学获得材料学专业工学硕士学位和工学博士学位;2007年1月至2008年2月,以国家留学基金委公派联合培养博士生身份,赴意大利帕尔马大学土木工程系留学一年;博士毕业后留校任教。担任中国混凝土与水泥制品协会教育与人力资源委员会副理事长、RILEM TC-SRT委员会委员、RILEM中国分会理事、中国土木工程学会纤维混凝土委员会委员等,也是多个国际学术期刊的审稿人或评审委员会委员。研究工作主要围绕新型纤维混凝土的基础理论和应用研究以及水泥基复合材料的耐久性研究。主持包括国家自然科学基金青年和面上项目、973项目专题、教育部博士点基金、中国铁路总公司重点课题和企业合作等项目十余项。以第一作者和通信作者在国内外学术期刊上发表论文70余篇,其中SCI收录18篇;申请国家发明专利40余项,其中授权13项。获教育部科技进步二等奖一项(第一完成人)、中国铁道学会铁道科技二等奖一项(第一完成人)。
引用本文:    
丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
DING Cong, GUO Liping, LEI Dongyi, XU Yanhui, ZHU Yu, DENG Zhonghua. Preparation and Critical Performances of Lightweight Insulation High Ductility Cementitious Composites. Materials Reports, 2019, 33(10): 1652-1658.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020147  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1652
1 Chen S Y.China Concrete and Cement Products, 2013, 6(6), 47(in Chinese).
程顺义.混凝土与水泥制品, 2013, 6(6), 47.
2 Zhou M J, Wang N N, Zhao X Y, et al.Concrete, 2009(4),104(in Chinese).
周明杰, 王娜娜, 赵晓艳,等.混凝土, 2009(4),104.
3 Qiu J F, Luo S X, Lu H, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(2),189(in Chinese).
邱军付, 罗淑湘,鲁虹,等.硅酸盐通报, 2013, 32(2),189.
4 Song B, Gong J, Yu S J, et al.Journal of Henan Polytechnic University (Natural Science), 2010, 29(3), 402(in Chinese).
宋斌,龚健,于水军, 等.河南理工大学学报(自然科学版), 2010, 29(3), 402.
5 Wang S, Wu C, Li V C. ACI Materials Journal, 2001, 98 (6),483.
6 Kudyakov A I , Steshenko A B.Advanced Materials Research, 2015, 1085,245.
7 Wang C Q, Tan K F, Xu X X. Journal of Southwest University of Science and Technology, 2013, 28(3), 11 (in Chinese).
王朝强,谭克锋,徐秀霞.西南科技大学学报, 2013, 28(3),11.
8 Zhan B G, Guo J L, Lin X S, et al. Journal of Hefei University of Technology (Natural Science), 2009, 2(2),226(in Chinese).
詹炳根,郭建雷,林兴胜.合肥工业大学学报(自然科学版), 2009, 2(2), 226.
9 Chen B, Liu J.Journal of Building Materials, 2010, 13(3), 286(in Chinese).
陈兵,刘睫. 建筑材料学报, 2010, 13(3), 286.
10 Lin X S. Development and properties of foamed concrete with fiber reinforcement. Master's Thesis, Hefei University of Technology, China, 2007 (in Chinese).
林兴胜.纤维增强泡沫混凝土的研制与性能. 硕士学位论文, 合肥工业大学, 2007.
11 Zhang Y F. Study on process of polypropylene fiber reinforced fly ash foam concrete. Master's Thesis, Chang'an University, China, 2007 (in Chinese).
张艳锋.聚丙烯纤维增强粉煤灰泡沫混凝土的工艺研究. 硕士学位论文,长安大学, 2007.
12 Jiang H. The study oil producing paddy fiber cement foamed heat preserivation wall material. Master's Thesis, Dalian University of Technology, China, 2008 (in Chinese).
姜欢.稻草纤维生产水泥基泡沫保温墙体材料的研究. 硕士学位论文, 大连理工大学, 2008.
13 Zhao X, Huo J C, Gao Y, et al.China Concrete and Cement Products, 2012(12),54(in Chinese).
赵星,霍冀川,高亚, 等.混凝土与水泥制品, 2012(12), 54.
14 Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50010-2010 Code for Design of Concrete Structures, China Building Industry Press, China,2015.
中华人民共和国住房和城乡建设部. GB 50010-2010 混凝土结构设计规范, 中国建筑工业出版社, 2015.
15 Redon C, Li V C, Wu C, et al.Journal of Materials in Civil Engineering, 2001, 13(6),399.
16 Yang E H, Wang S, Yang Y, et al.Journal of Advanced Concrete Techno-logy, 2008, 6(1),181.
17 Wang S, Li V C.ACI Materials Journal, 2007, 104(3),233.
18 Lin Z, Kanda T, Li V C.Materials & Structures, 2011, 1,173.
19 Cai L, Chen T L, Wang H.Housing Materials & Applications, 2006, 34 (3),1(in Chinese).
蔡路,陈太林,王浩. 建筑节能, 2006, 34 (3),1
[1] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[2] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[3] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[6] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[7] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[8] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[9] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[10] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed