Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1659-1665    https://doi.org/10.11896/cldb.18010282
  无机金属及其复合材料 |
浇注式导电沥青混凝土组合结构热传导效应预估模型
陈谦1, 王朝辉1, 樊振通1, 侯荣国2, 陈姣1,3
1 长安大学公路学院,西安 710064
2 交通运输部公路科学研究院,北京 100088
3 中交通力建设股份有限公司,西安 710075
The Estimation Model of Heat Conduction Effect for Combination Structure with Conductive Gussasphalt Concrete
CHEN Qian1, WANG Chaohui1, FAN Zhentong1, HOU Rongguo2, CHEN Jiao1,3
1 School of Highway, Chang'an University, Xi'an 710064
2 Research Institute of Highway, Ministry of Transport, Beijing 100088
3 ZHONGJIAOTONGLI Construction Co.,Ltd, Xi'an 710075
下载:  全 文 ( PDF ) ( 13908KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步确定浇注式导电沥青混凝土组合结构热传导效应及融雪化冰工作时间,系统研究了浇注式导电沥青混凝土组合结构传导热基本原理,建立了浇注式导电沥青混凝土组合结构上面层热传导效应预估模型,分别实测和预估了不同环境温度、结构层厚度及通电时间等条件下组合结构上面层的表面温度,确定了浇注式导电沥青混凝土融雪化冰工作时间,并采用pearson相关性检验方法,对比分析及验证了浇注式导电沥青混凝土组合结构的热传导效应预估模型的准确性,为浇注式导电沥青混凝土在桥面铺装领域的推广应用奠定基础。结果表明:浇注式导电沥青混凝土组合结构传导热过程是一种瞬态非稳态导热过程,不同环境条件下,组合结构上面层表面温度在初期上升、中期转折、后期下降等三阶段的预估误差分别维持在0.2~0.8 ℃、0.3~1.2 ℃和0.7~5.5 ℃,其融雪化冰工作时间预估误差则维持在16 min左右;不同环境温度、结构层厚度和通电时间等条件下,预估模型得出的组合结构上面层表面温度的预测值与实测值相关系数介于0.974 0~0.989 0之间,相应P值均小于0.01,判定系数R2介于0.948 7~0.978 1之间,两者为显著相关,拟合优度较高,预估结果较为准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈谦
王朝辉
樊振通
侯荣国
陈姣
关键词:  道路材料  浇注式导电沥青混凝土  桥面铺装  预估模型  热传导效应  融雪化冰工作时间    
Abstract: To determine the heat conduction effect and the snow melting time of combination structure with conductive gussasphalt concrete, the heat conduction principle of combination structure with conductive gussasphalt concrete was studied systematically. The estimation model of heat conduction effect for the upper layer on the combination structure with conductive gussasphalt concrete was established. The surface temperatures on the upper layer of the combination structure were measured and estimated at different ambient temperature, thickness of structure layer and electrified time. The snow melting time of conductive gussasphalt concrete was determined. The accuracy of the estimation model for combination structure with conductive gussasphalt concrete was analyzed and verified with pearson correlation method. It lays a foundation for the popularization and application of conductive gussasphalt concrete in the field of bridge deck pavement. The results show that the heat conduction process of the combination structure with conductive gussasphalt concrete is a heat conduction process with transient and unsteady. At different environment conditions, the surface temperatures on the upper layer of the combination structure can be divided into three stages, such as the initial rise, the mid-term turn, and the later decline. Their estimation errors are maintained at 0.2—0.8 ℃, 0.3—1.2 ℃ and 0.7—5.5 ℃, respectively. The estimation error of snow melting time is maintained at about 16 min. At different ambient temperature, thickness of structure layer and electrified time, the coefficients (R) between the test values and estimation values calculated of surface temperatures for combination structure with conductive gussasphalt concrete by the estimation model are between 0.974 0 and 0.989 0. The conspicuous level values (P) are less than 0.01 and the judgment coefficients (R2) are between 0.948 7 and 0.978 1. It means that there is a good correlation between estimation values and test values. That is to say, the estimated result is accurate.
Key words:  road material    conductive gussasphalt concrete    bridge deck pavement    estimation model    heat conduction effect    snow melting time
                    发布日期:  2019-05-16
ZTFLH:  414  
  TB332  
基金资助: 陕西省创新能力支撑计划项目(2017KW-033);天津市交通运输科技发展计划项目(2017A-12);河南省交通运输科技计划项目(2018J8);长安大学中央高校基本科研业务费资助项目(300102219701; 300102219314; 300102218210)
通讯作者:  wchh0205@chd.edu.cn   
作者简介:  陈谦,长安大学公路学院,博士研究生在读,主要从事绿色道路新材料及新技术的研究,发表学术论文7篇,其中SCI/EI检索6篇;获国家授权专利6项。王朝辉,长安大学公路学院,教授、博导,长安大学首批“青年长安学者”,美国俄克拉荷马州立大学访问学者,国际稀浆罩面协会专家委员会成员。2008年7月毕业于长安大学,获工学博士学位。同年加入长安大学公路学院道路研究所工作至今,主要从事绿色道路新材料与新技术的开发及应用、道路预防性养护与决策优化技术等领域的研究。以第一作者/通讯作者发表学术论文70余篇,其中SCI/EI 40余篇;获国家授权发明专利58项。
引用本文:    
陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
CHEN Qian, WANG Chaohui, FAN Zhentong, HOU Rongguo, CHEN Jiao. The Estimation Model of Heat Conduction Effect for Combination Structure with Conductive Gussasphalt Concrete. Materials Reports, 2019, 33(10): 1659-1665.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010282  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1659
1 Chen Q, Wang C H, Wen P H, et al. Journal of Cleaner Production, 2018, 203,633.
2 Piringer G, Kreiter W. Gestrata Journal, 2014, 1,26.
3 Wan T T, Wu N C. Road Machinery & Construction Mechanization,
2015, 32(2),81(in Chinese).
万涛涛,吴年超. 筑路机械与施工机械化, 2015, 32(2),81.
4 Chen Q, Wang C H, Fu H, et al. Construction & Building Materials, 2018, 190,13.
5 Zheng M, Wu S, Wang C, et al.Applied Sciences, 2017, 7(6),583.
6 Hossain S M K, Fu L, Hosseini F, et al. Canadian Journal of Civil Engineering, 2016, 43(9),802.
7 Wang C H, Wang X C.Road Machinery & Construction Mechanization, 2015, 32(11),26.
王朝辉, 王选仓.筑路机械与施工机械化, 2015, 32(11),26.
8 Yu W B, Li S Y, Feng W J, et al.Journal of Glaciology & Geocryology, 2011, 33(4),933 (in Chinese).
喻文兵, 李双洋, 冯文杰,等.冰川冻土, 2011, 33(4),933.
9 Won J P, Kim C K, Lee S J, et al.Composite Structures, 2014, 118(1),106.
10 Wang C H, Chen Q, Gao Z W, et al. Materials Review A:Review Papers,2017,31(3),135 (in Chinese).
王朝辉,陈谦,高志伟,等. 材料导报:综述篇,2017,31(3),135.
11 Pan P, Wu S, Xiao F, et al. Journal of Intelligent Material Systems & Structures, 2014, 26(7),755.
12 Bai B C, Park D W, Hai V V, et al. Journal of Nanomaterials, 2015, 16(1),255.
13 Wang C H, Yang X, Li Q, et al. Transportmetrica A:Transport Science, 2018, 14,1.
14 Pan P, Wu S, Hu X, et al. Materials, 2017, 10(3),218.
15 Hai V V, Park D W. Advances in Materials Science and Engineering, 2017, 3,1.
16 Zheng S P, Cheng Z H, Fang R, et al.Journal of Highway and Transportation Research and Development(Applied Technology Edition), 2015(2),77 (in Chinese).
郑少鹏, 程志豪, 房锐,等.公路交通科技(应用技术版), 2015(2),77.
17 Zheng S P, Cheng Z H, Fang R, et al. patent,CN 201510912404.2, 2017.
18 Wang Y, Tian B S, Bai F W, et al.Acta Energiae Solaris Sinica, 2015, 36(8),1990 (in Chinese).
王艳, 田斌守, 白凤武,等.太阳能学报, 2015, 36(8),1990.
19 Wang C H, Chen Q, Fu H, et al. Construction & Building Materials, 2018, 172,422.
20 Zhang W P, Tong F, Xing Y S, et al.Journal of Building Materials, 2015, 18(2),183 (in Chinese).
张伟平, 童菲, 邢益善,等.建筑材料学报, 2015, 18(2),183.
[1] 李 款,潘友强,张 辉,陈李峰,张 健. 钢桥面铺装用环氧沥青相容性研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1534-1540.
[2] 张正一, 韩晓霞, 王朝辉, 孙晓龙. 路用降温涂层在模拟污染工况下的降温性能[J]. CLDB, 2018, 32(8): 1373-1379.
[3] 王朝辉, 傅一, 陈谦, 陈宝, 周骊巍. 环氧沥青混凝土桥面铺装材料研究与应用进展[J]. 材料导报, 2018, 32(17): 2992-3009.
[4] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[5] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
[6] 张磊, 问鹏辉, 王朝辉, 狄升贯, 殷卫永. 道路非开挖注浆加固补强材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 98-105.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed