Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1666-1670    https://doi.org/10.11896/cldb.19020036
  无机金属及其复合材料 |
高液限红黏土的压实特性与路基填筑方案
王林峰1, 田耘1, 曾彪2, 翁其能1
1 重庆交通大学,山区公路水运交通地质减灾重庆市高校市级重点实验室,重庆 400047
2 东南大学岩土工程研究所,南京 211100
Compaction Characteristics of High Liquid Limit Red Clay and Subgrade Filling Scheme
WANG Linfeng1, TIAN Yun1, ZENG Biao2, WENG Qineng1
1 Key Laboratory of Geological Hazards Mitigation for Mountainous Highway and Waterway, Chongqing Jiaotong University, Chongqing 400074
2 Institute of Geotechnical Engineering, Southeast University, Nanjing 211100
下载:  全 文 ( PDF ) ( 12431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 红黏土由于水敏性一般不宜直接作为路基填料,工程中可通过加入碎石等粗骨料对其路用性能进行改良,但在实际工程应用中存在土石拌和不均的问题。基于此,为研究红黏土的压实特性,进行了标准击实和CBR强度试验。结果表明:红黏土的湿法击实结果更适用于指导工程实际,其击实曲线呈现双峰特性,分析认为第二个峰值是真正的最大干密度,其对应的含水率为最优含水率;探究了红黏土含水率与压实度、CBR强度之间的关系,压实度与强度并不呈正相关,最大CBR强度值对应的含水率比最优含水率高约5%,在适宜含水率和适当的击实功作用下,红黏土的CBR强度值和压实度都可以满足公路路基规范所需标准,这为红黏土用于路基填料提供了可能。因此,提出了“互层式”红黏土土石分层填筑方案,并运用Flac3D软件对几种不同工况下的路基填筑方式进行了数值模拟,其竖向沉降、数值模拟及工后沉降监测分析结果都表明,“互层式”红黏土土石分层填筑方式能满足高速公路路基沉降所要求的标准。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王林峰
田耘
曾彪
翁其能
关键词:  红黏土  压实特性  CBR强度  互层式  Flac3D  工后沉降    
Abstract: Red clay can not be used as embankment filler directly due to its water-sensitive property. In engineering, it can be improved by adding gravel and other coarse aggregates. However, it is difficult to mix soil and gravel uniform. In order to study the compaction characteristics of red clay, standard compaction and CBR strength tests were carried out in this paper. The test results showed that the wet compaction results of red clay were more suitable for guiding engineering practice, and its compaction curve showed double peak characteristics. The second peak was the real maximum dry density, and its corresponding moisture content was the optimal moisture content. The moisture content and compression of red clay were explored. The relationship between compactness and CBR strength was not positively correlated with strength. The moisture content corresponding to the maximum CBR strength was about 5% higher than the optimal moisture content. Under the effect of suitable moisture content and appropriate compaction work, the CBR strength and compactness of red clay can meet the requirements of highway roadbed specifications, which makes it possible for red clay to be used as roadbed filler. Therefore, the “sandwich form” red clay-gravel filling scheme was proposed. Flac3D software was used to simulate several roadbed filling modes under different working conditions, and the vertical settlement was analyzed. The numerical simulation and post-construction settlement monitoring results showed that the “Sandwich form” red clay-gravel filling method can achieve the requirements of highway roadbed settlement standards.
Key words:  red clay    compaction characteristics    CBR strength    sandwich form    Flac3D    settlement
                    发布日期:  2019-05-16
ZTFLH:  U416.1  
基金资助: 国家自然科学基金(51478073);国家重点研发计划项目(2016YFC0802203)
通讯作者:  303761984@qq.com   
作者简介:  王林峰,重庆交通大学山区公路水运交通地质减灾重庆市高校市级重点实验室,教授,2012年12月毕业于重庆交通大学河海学院,港口海岸及近海工程博士学位,2009年10月加入重庆交通大学工作至今,主要从事交通地质减灾理论与技术研究。田耘,于2017年9月在重庆交通大学山区公路水运交通地质减灾重庆市高校市级重点实验室学习,硕士研究生,主要从事岩土工程病害机理及海岸近海工程研究。
引用本文:    
王林峰, 田耘, 曾彪, 翁其能. 高液限红黏土的压实特性与路基填筑方案[J]. 材料导报, 2019, 33(10): 1666-1670.
WANG Linfeng, TIAN Yun, ZENG Biao, WENG Qineng. Compaction Characteristics of High Liquid Limit Red Clay and Subgrade Filling Scheme. Materials Reports, 2019, 33(10): 1666-1670.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020036  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1666
1 Zhao Y W, Kong L W, Guo A G,et al.Rock And Soil Mechanics, 2003, 24(4),568(in Chinese).
赵颖文, 孔令伟, 郭爱国,等. 岩土力学, 2003, 24(4),568.
2 Wang Z W, Hong B N, Liu X, et al.Journal of Sichuan University(Engineering Science Edition), 2011, 43(1),17(in Chinese).
王中文, 洪宝宁, 刘鑫,等. 四川大学学报(工程科学版), 2011, 43(1),17.
3 Tan Y Z, Kong L W, G A G, et al.Rock And Soil Mechanics, 2010, 31(3),851(in Chinese).
谈云志, 孔令伟, 郭爱国,等. 岩土力学, 2010, 31(3),851.
4 Liu L W,Yang H P, Kang S L, et al.Highway, 2002(6),125(in Chinese).
刘龙武, 杨和平, 康石磊,等. 公路, 2002(6),125.
5 Snethen D R, Miller G A, Cerato A B.Field Studies, 2008, 4(4),206.
6 Yang Z Q, Guo J Y.Rock And Soil Mechanics, 1991,12(3),11(in Chinese).
杨志强,郭见扬. 岩土力学,1991,12(3), 11.
7 Yang J, Zou L, Di X J, et al.Journal of Highway and Transportation Research and Development, 2015,32(9),41(in Chinese).
杨俊, 邹林, 狄先均,等. 公路交通科技, 2015,32(9),41.
8 Chen Y. Experimental analysis of settlement deformation characteristics of high embankment.Master's Thesis, Southwest Jiaotong University, 2008(in Chinese).
陈云. 高路堤沉降变形特性试验分析. 硕士学位论文,西南交通大学, 2008.
9 Li X D. Study on road performance and construction technique of Yunnan red clay.Master's Thesis, Chang'an University, 2016(in Chinese).
李向东. 云南红黏土路用性能及施工工艺研究.硕士学位论文,长安大学, 2016.
10 Liu C Y, Dou Y M, Ron X.Journal of Hebei University of Technology, 1999, 28(4),64(in Chinese).
刘春原, 窦远明, 戎贤. 河北工业大学学报, 1999, 28(4),64.
11 Zhang Y T, Wang B T, Zhu B P.Science Technology and Engineering, 2013, 13(6),1676(in Chinese).
张永婷, 王保田, 朱宝平. 科学技术与工程, 2013, 13(6),1676.
12 Richard G, Cousin I, Sillon J F, et al.European Journal of Soil Science, 2010,52(1),49.
13 Sivakumar V, Wheeler S J.Géotechnique, 2000, 50(4),359.
14 Naeini S A, Ziaie-Moayed R.International Journal of Civil Engineering, 2009,7(2),124.
15 Cheng Y, Shi M L.Rock And Soil Mechanics, 2011, 32(4),979(in Chinese).
程钰, 石名磊. 岩土力学, 2011, 32(4), 979.
16 Zhang Y X.Journal of Wuhan Institute of Technology, 2011, 33(6),72(in Chinese).
张宇旭. 武汉工程大学学报, 2011, 33(6),72.
17 Zhou Y. Research on control of construction technology and prediction of settlement for high Embankment Filled. Master's Thesis, Chongqing Jiaotong Universty, 2013(in Chinese).
周禹. 高填方路基沉降预测与控制沉降施工技术的研究.硕士学位论文,重庆交通大学, 2013.
18 Jones D, Rahim A, et al.Lancet, 2010, 371(9618),1050.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed