Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2230-2240    https://doi.org/10.11896/j.issn.1005-023X.2018.13.014
  无机非金属及其复合材料 |
沥青混合料动态模量预估模型研究进展
杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦
长安大学特殊地区公路工程教育部重点实验室,西安 710064
A Review of Dynamic Modulus Prediction Model of Asphalt Mixture
YANG Xiaolong, SHEN Aiqin, GUO Yinchuan, ZHAO Xueying, LYU Zhenghua
Key Laboratory for Special Region Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 2218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于沥青路面结构受到车辆荷载、环境等因素的不断变化作用,它的实际工作状态与静态体系在材料性质等方面存在较大差距。因此,针对动态荷载作用下沥青路面结构的动态参数和动力特性的研究十分必要。沥青混合料动态模量是沥青路面设计的重要参数之一,通过室内试验测得沥青混合料不同温度、频率下的动态模量,然后绘制主曲线,可准确预测不同温度、频率及极端条件下沥青混合料的动态模量。然而,目前沥青混合料模量测试方法复杂、试验成本较高,因此寻求简便的方法获得或预估沥青混合料的模量成为近年来研究的热点。   为此,已有众多学者针对沥青混合料动态模量预估模型进行了研究。典型的预估模型包括Witczak 1-37A模型、NCHRP 1-40D模型和Hirsch模型等,尽管这些模型是在大量试验数据的基础上拟合得到,但由于世界不同地区的材料、试验方法、环境条件等存在差异,致使三种经验预估模型在不同地区的适用性也不尽相同。与此同时,随着计算机技术的发展,研究人员逐渐从微观角度建立模型来预测混合料的动态模量,而在沥青混合料数值模拟方面,离散元法(DEM)具有其他数值模拟方法无可比拟的优势。   在典型预估模型的适用性方面,国外针对沥青混合料动态模量的预估做了大量研究,对几种典型的动态模量预估模型的适用性进行了系统分析,并提出了具体的修正模型。但目前我国在预估模型方面的研究只集中于个别省份和地区,而全国范围内沥青混合料动态模量的综合测试较少,缺乏有效的预估模型基础数据,因此针对我国不同地区沥青混合料动态模量的预估模型有待进一步深入研究。在沥青混合料细观模型方面,基于CT图像处理技术的离散元仿真试验,可建立以真实试件为依据的虚拟几何模型,其中集料形状、分布以及空隙特征都可与实际情况一致,从而进行良好的虚拟仿真试验。   本文归纳了沥青混合料动态模量预估模型的研究进展,分别对沥青混合料动态模量预估模型以及各预估模型在不同地区的适应性进行了分析,并介绍了基于DEM的动态模量预测方法。最后,分析了沥青混合料动态模量预估模型研究面临的问题并展望了其应用前景,以期为沥青混合料动态模量预估模型在我国沥青路面设计中的研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨小龙
申爱琴
郭寅川
赵学颖
吕政桦
关键词:  沥青混合料  动态模量  预估模型  适用性  离散元方法    
Abstract: Owing to the variation of vehicle load and environmental conditions, there exist huge difference between the actual working state and the static state in the material properties of asphalt pavement. Hence, it is necessary to investigate the dynamic characteristics of the asphalt pavement under dynamic load. The dynamic modulus of asphalt mixture is one of the important input parameters in asphalt pavement design. Usually, the master curve of asphalt mixture, fitted by the dynamic modulus of different temperatures and frequencies, can be used to accurately predict the dynamic modulus of asphalt mixture under different temperature, frequency and extreme conditions. Nevertheless, the complexity and high cost of indoor tests have hindered the application of modulus test of asphalt mixture. Therefore, exploring a more convenient way to obtain or predicate the dynamic modulus of asphalt mixture has become a research hot spot in recent years.   There has been numerous studies on dynamic modulus prediction model. Several classical models like Witczak 1-37A, NCHRP 1-40D and Hirsch have been proposed. Although the three models are fitted on the basis of a large number of experimental data, the applicability of them are different because of the differences of materials, test methods and environment conditions in various regions of the world. Besides, with the development of computer technology, researchers endeavor to build simulation models in microscopic view to predicate the dynamic modulus of asphalt mixture in recent years. Specially, discrete element method (DEM) shows great advantages and has been widely used to simulate the asphalt mixture materials.   In terms of applicability of the typical prediction models, a large number of studies on dynamic modulus prediction of asphalt mixture have been carried out by foreign scholars. The applicability of the three typical prediction models are systematically analyzed, and specific revision models have been put forward. However, the researches of the prediction model only restrict to few provinces and regions in China. It lacks nationwide comprehensive research on the dynamic modulus of asphalt mixture, which leads to the insufficient data base for revising the prediction model. All in all, there is an urgent need for further investigating the dynamic modulus prediction of asphalt mixture in different regions of China. For the microscopic simulation model of asphalt mixture, the DEM with CT technology can create a virtual specimen model, in which the aggregate shape, distribution and void features are in consistent with the actual situation, and the simulation test can be carried out accurately.    This article summarizes the status quo of dynamic modulus prediction model of asphalt mixture. The three classical dynamic modulus prediction model and their applicability in different regions are introduced and analyzed. Besides, the discrete element me-thod (DEM) that used to predict the dynamic modulus of asphalt mixture is elaborated with emphases. At last, the current drawbacks existing in this technology are pointed out and the future research trends are proposed, which expected to provide a reference for the research and application of the dynamic modulus prediction model of asphalt mixture.
Key words:  bituminous mixture    dynamic modulus    prediction model    applicability    DEM
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  U414  
基金资助: 陕西省自然科学基础研究计划项目(2017JQ5085)
作者简介:  杨小龙:男,1989年生,博士研究生,研究方向为路基路面工程 E-mail:yangxiaolong1616@163.com
引用本文:    
杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
YANG Xiaolong, SHEN Aiqin, GUO Yinchuan, ZHAO Xueying, LYU Zhenghua. A Review of Dynamic Modulus Prediction Model of Asphalt Mixture. Materials Reports, 2018, 32(13): 2230-2240.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.014  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2230
1 Wei J C, Cui S P, Hu J B. Research on dynamic modulus of asphalt mixtures[J].Journal of Building Materials,2008,11(6):657(in Chinese).
韦金城,崔世萍,胡家波.沥青混合料动态模量试验研究[J].建筑材料学报,2008,11(6):657.
2 Sun Jian. The research of asphalt mixture dynamic modulus[D].Xi’an: Chang’an University,2007(in Chinese).
孙建.沥青混合料动态模量研究[D].西安:长安大学,2007.
3 Yang Ming. Research on the dynamic modulus of asphalt mixture[D].Changsha: Changsha University of Science and Technology,2007(in Chinese).
羊明.沥青混合料动态模量研究[D].长沙:长沙理工大学,2007.
4 Fan X Y, Luo R, Feng G L, et al. Validation and analysis of dyna-mic modulus prediction model of asphalt mixture[J].Journal of Wuhan University of Technology(Transportation Science & Enginee-ring),2017,41(2):298(in Chinese).
樊向阳,罗蓉,冯光乐,等.沥青混合料动态模量预测模型的验证与分析研究[J].武汉理工大学学报(交通科学与工程版),2017,41(2):298.
5 Georgouli K, Loizos A, Plati C. Calibration of dynamic modulus predictive model[J].Construction and Building Materials,2016,102:65.
6 Li J, Zofka A, Yut I. Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US region[J].Road Materials and Pavement Design,2012,13(2):249.
7 交通部公路规划设计院.公路沥青路面设计规范[M].北京:人民交通出版社,2017.
8 Luo S, Qian Z D, Harvey J. Research on dynamic modulus for epoxy asphalt mixtures and its master curve[J].China Journal of Highway & Transport,2010,23(6):16(in Chinese).
罗桑,钱振东,Harvey J.环氧沥青混合料动态模量及其主曲线研究[J].中国公路学报,2010,23(6):16.
9 Witczak M, Fonseca O. Revised predictive model for dynamic (complex) modulus of asphalt mixtures[J].Transportation Research Record,1996,1540(1):15.
10 Bari J, Witczak M W. Development of a new revised version of the Witczak E predictive model for hot mix asphalt mixtures[J].Journal of the Association of Asphalt Paving Technologists,2006,75:381.
11 Witczak M, El-Basyouny M, El-Badawy S. Incorporation of the new (2005) E* predictive model in the MEPDG,NCHRP 1-40D final report[R].Tempe, AZ:Arizona State University,2007.
12 Jr D W C, Pellinen T, Bonaquist R F. Hirsch model for estimating the modulus of asphalt concrete[J].Asphalt Paving Technology: Association of Asphalt Paving Technologists—Proceedings of the Technical Sessions,2003,72:97.
13 Liu P. Pavement material properties research based on gene expression programming algorithm[D].Changsha: Hunan University,2015(in Chinese).
刘沛.基于基因表达式算法的路面材料性能预测[D].长沙:湖南大学,2015.
14 Esfandiarpour S, Shalaby A. Local calibration of creep compliance models of asphalt concrete[J].Construction and Building Materials,2017,132:313.
15 Far S. Development of new dynamic modulus (|E*|) predictive models for hot mix asphalt mixtures[D].Raleigh, North Carolina: North Carolina State University,2011.
16 Singh D, Zaman M, Commuri S. Artificial neural network modeling for dynamic modulus of hot mix asphalt using aggregate shape pro-perties[J].Journal of Materials in Civil Engineering,2013,25(1):54.
17 Ceylan H, Gopalakrishnan K, Kim S. Advanced approaches to hot-mix asphalt dynamic modulus prediction[J].Canadian Journal of Civil Engineering,2008,35(7):699.
18 You Z, Buttlar W. Micromechanical modeling approach to predict compressive dynamic moduli of asphalt mixtures using the distinct element method[J].Transportation Research Record Journal of the Transportation Research Board,2006,1970(1):73.
19 Zhanping You, Shu Wei Goh, Qingli Dai, et al. Dynamic moduli for M-E design of asphalt pavements[C]∥Plan, Build, and Manage Transportation Infrastructure in China. Reston, VA,2008.
20 Azari H, Al-Khateeb G, Shenoy A, et al. Comparison of simple performance test |E*| of accelerated loading facility mixtures and prediction |E*|: Use of NCHRP 1-37A and Witczak’s new equations[J].Transportation Research Record,2007,1:689.
21 Khattab A M, El-Badawy S M, Elmwafi M, et al. Comparison of Witczak NCHRP 1-40D & Hirsh dynamic modulus models based on different binder characterization methods: A case study[C]∥International Conference on Advances in Sustainable Construction Mate-rials & Civil Engineering Systems. London, United Kingdom,2017:07003.
22 Christensen D W, Bonaquist R. Improved Hirsch model for estimating the modulus of hot-mix asphalt[J].Road Materials and Pavement Design,2015,16(s2):254.
23 唐启义.DPS数据处理系统[M].北京:科学出版社,2013.
24 Tian Y, Zhang C, Mao X R, et al. Research on abnormal behavior of power consumption based on BP neural network with PCA[J].Journal of Chongqing University of Technology(Natural Science),2017,31(8):125(in Chinese).
田野,张程,毛昕儒,等.运用PCA改进BP神经网络的用电异常行为检测[J].重庆理工大学学报(自然科学版),2017,31(8):125.
25 Ceylan H, Kim S, Gopalakrishnan K. Hot mix asphalt dynamic modulus prediction models using neural networks approach[M].USA:ASME Press,2007.
26 Ceylan H,Schwartz C W,Kim S, et al. Accuracy of predictive mo-dels for dynamic modulus of hot-mix asphalt[J].Journal of Materials in Civil Engineering,2009,21(6):286.
27 You Z, Goh S W, Dong J. Predictive models for dynamic modulus using weighted least square nonlinear multiple regression model[J].Canadian Journal of Civil Engineering,2012,39(5):589.
28 El-Badawy S M, Bayomy F M. Evaluation of the MEPDG dynamic modulus prediction models for asphalt concrete mixtures[J].T&DI Congress,2011,2011:576.
29 Singh D, Zaman M, Commuri S. Evaluation of predictive models for estimating dynamic modulus of hot-mix asphalt in Oklahoma[J].Transportation Research Record: Journal of the Transportation Research Board,2011,2210:57.
30 El-Badawy S, Bayomy F, Awed A. Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: Local Calibration for Idaho[J].Journal of Materials in Civil Engineering,2012,24(11):1412.
31 Biligiri K P, Way G B. Predicted E* dynamic moduli of the Arizona mixes using asphalt binders placed over a 25-year period[J].Construction and Building Materials,2014,54:520.
32 Sakhaeifar M S, Richard Kim Y, Kabir P. New predictive models for the dynamic modulus of hot mix asphalt[J].Construction and Buil-ding Materials,2015,76:221.
33 Shen S, Yu H, Willoughby K, et al. Local practice of assessing dynamic modulus properties for Washington state mixtures[J].Transportation Research Record: Journal of the Transportation Research Board,2013,2373:89.
34 Robbins M, Timm D. Evaluation of dynamic modulus predictive equations for Southeastern United States asphalt mixtures[J].Transportation Research Record: Journal of the Transportation Research Board,2011,2210:122.
35 Cho Y H, Park D W, Hwang S D. A predictive equation for dynamic modulus of asphalt mixtures used in Korea[J].Construction and Building Materials,2010,24(4):513.
36 Yousefdoost S, Vuong B, Rickards I, et al. Evaluation of dynamic modulus predictive models for typical Australian asphalt mixes[J].AAPA International Flexible Pavements Conference. Brisbane, Queensland, Australia,2013.
37 Khattab A M, El-Badawy S M, Al Hazmi A A, et al. Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME design in the Kingdom of Saudi Arabia[J].Construction and Building Materials,2014,64:360.
38 Tan Y Q, Fu X G, Ma S J, et al. Experimental study on dynamic modulus of asphalt mixture based on free-free resonant test[J].China Civil Engineering Journal,2015(12):116(in Chinese).
谭忆秋,傅锡光,马韶军,等.基于无约束共振法沥青混合料动态模量试验研究[J].土木工程学报,2015(12):116.
39 华南理工大学道路研究所.沥青混合料动态模量参数研究[R].广州:华南理工大学,2007.
40 Zhao Y Q, Pan Y Q, Huang D X. Verification of Hirsch model in predicting dynamic moduli of asphalt mixtures[J].Highway,2007(11):196(in Chinese).
赵延庆,潘有强,黄大喜.沥青混合料动态模量Hirsch预测模型的验证研究[J].公路,2007(11):196.
41 Ma X, Ni F J, Chen R S. Dynamic modulus test of asphalt mixture and prediction model[J].China Journal of Highway & Transport,2008,21(3):35(in Chinese).
马翔,倪富健,陈荣生.沥青混合料动态模量试验及模型预估[J].中国公路学报,2008,21(3):35.
42 Yan Z L, Hu X G, Xiao Z R. Dynamic modulus test of asphalt mixture and prediction model[J].Highway,2008(1):175(in Chinese).
闫振林,胡霞光,肖昭然.沥青混合料动态模量预估模型研究[J].公路,2008(1):175.
43 Ma S J, Fu J C, Wei J C, et al. Study on dynamic modulus prediction model of large stone porous asphalt mixture[J].Journal of Highway and Transportation Research and Development,2010(5):36(in Chinese).
马士杰,付建村,韦金城,等.大粒径透水性沥青混合料动态模量预估模型研究[J].公路交通科技,2010(5):36.
44 Fu Xiguang. Experimental research on dynamic modulus of asphalt mixture based on unconstrained resonant test[D].Harbin: Harbin Institute of Technology,2015(in Chinese).
傅锡光.基于无约束共振法沥青混合料动态模量试验研究[D].哈尔滨:哈尔滨工业大学,2015.
45 Jing R X, Wang D S, Feng D C. Research on master curve of common asphalt mixtures in Liaoning province[J].Journal of Liaoning Technical University (Natural Science Edition),2013(9):1246(in Chinese).
荆儒鑫,王东升,冯德成.辽宁省典型沥青混合料动态模量[J].辽宁工程技术大学学报(自然科学版),2013(9):1246.
46 Haopeng W, Jun Y, Wenzhang Z, et al. Assessing dynamic modulus properties for typical asphalt mixtures in Jiangsu[J].Journal of Southeast University(English Edition),2016,32(1):99.
47 You Yuanjian. The research on the dynamic modulus of asphalt mixture[D].Jinan: Shandong Jianzhu University,2017(in Chinese).
尤远见.沥青混合料动态模量的研究[D].济南:山东建筑大学,2017.
48 Guo N S, Zhao Y H. Dynamic modulus prediction of asphalt mixtures based on micromechanics[J].Engineering Mechanics,2012(10):13(in Chinese).
郭乃胜,赵颖华.基于细观力学的沥青混合料动态模量预测[J].工程力学,2012(10):13.
49 Fan Zepeng. The micromechanical model of asphalt mixture consi-dering inter-particle interaction[D].Xi’an: Chang’an University,2016(in Chinese).
樊泽鹏.考虑颗粒相互作用的沥青混合料细观力学模型[D].西安:长安大学,2016.
50 Huang X Y. Study on forecasting methods for dynamic modulus of asphalt mixtuce[J].Technology of Highway & Transport,2015(4):32(in Chinese).
黄晓勇.沥青混合料动态模量预测方法研究[J].公路交通技术,2015(4):32.
51 Zhao Y, Bai L, Liu H. Implementation of a triaxial dynamic modulus master curve in finite-element modeling of asphalt pavements[J].Journal of Materials in Civil Engineering,2014,26(3):491.
52 Ying H, Elseifi M A, Mohammad L N, et al. Heterogeneous finite-element modeling of the dynamic complex modulus test of asphalt mixture using X-ray computed tomography[J].Journal of Materials in Civil Engineering,2014,26(9):04014052.
53 Aragão F, Kim Y, Karki P, et al. Semiempirical, analytical, and computational predictions of dynamic modulus of asphalt concrete mixtures[J].Transportation Research Record: Journal of the Transportation Research Board,2010,2181:19.
54 Wan C, Zhang X, Wang L, et al. Three-dimensional micromechanical finite element analysis on gauge length dependency of the dyna-mic modulus of asphalt mixtures[J].Road Materials and Pavement Design,2012,13(4):769.
55 Fakhari Tehrani F, Quignon J, Allou F, et al. Two-dimensional/three-dimensional biphasic modelling of the dynamic modulus of bituminous materials[J].European Journal of Environmental and Civil Engineering,2013,17(6):430.
56 Tian Li. The virtual test of asphalt mixture stiffness moduli based on DEM[D].Xi’an: Chang’an University,2008(in Chinese).
田莉.基于离散元方法的沥青混合料劲度模量虚拟试验研究[D].西安:长安大学,2008.
57 Shi F Z, Chang M F, Pei J Z, et al. Mesoscopic analysis on vector field of asphalt mixture using discrete element method[J].Journal of Chang’an University (Natural Science Edition),2014,34(2):9(in Chinese).
石福周,常明丰,裴建中,等.基于离散元方法的沥青混合料矢量场细观分析[J].长安大学学报(自然科学版),2014,34(2):9.
58 田莉,闫振林,胡霞光.离散单元法在沥青混合料动态模量研究中的应用[C]∥中国力学学会学术大会.郑州,2009:1.
59 Adhikari S, You Z. 3D discrete element models of the hollow cylindrical asphalt concrete specimens subject to the internal pressure[J].International Journal of Pavement Engineering,2010,11(5):429.
60 Liu Y, You Z. Accelerated discrete-element modeling of asphalt-based materials with the frequency-temperature superposition principle[J].Journal of Engineering Mechanics,2011,137(5):355.
61 Sanjeev Adhikari Z Y, Emin Kutay M. Prediction of dynamic modulus of asphalt concrete using two-dimensional and three-dimensional discrete element modeling approach[J].American Society of Civil Engineers,2008,179:1020.
62 Feng H, Pettinari M, Hofko B, et al. Study of the internal mechanical response of an asphalt mixture by 3-D discrete element modeling[J].Construction and Building Materials,2015,77:187.
63 李海滨,青维,盛燕萍.基于CT扫描和离散元的沥青混合料动态模量虚拟仿真[J].中外公路,2016(5):202.
64 陈俊,张东,黄晓明.离散元颗粒流软件(PFC)在道路工程中的应用[M].北京:人民交通出版社,2015.
65 Tian R X, Jiao H G. Application status and analysis of discrete element software PFC in mining engineering[J].Mining & Metallurgy,2011,20(1):7(in Chinese).
田瑞霞,焦红光.离散元软件PFC在矿业工程中的应用现状及分析[J].矿冶,2011,20(1):7.
66 Tian L, Liu Y, Wang B G. 3D DEM model and digital restructure technique for asphalt mixture simulation[J].Journal of Chang’an University(Natural Science Edition),2007(4):23(in Chinese).
田莉,刘玉,王秉纲.沥青混合料三维离散元模型及其重构技术[J].长安大学学报(自然科学版),2007(4):23.
67 Ma T, Zhang D, Zhang Y, et al. Micromechanical response of aggregate skeleton within asphalt mixture based on virtual simulation of wheel tracking test[J].Construction and Building Materials,2016,111:153.
68 You Z, Adhikari S, Dai Q. Air void effect on an idealised asphalt mixture using two-dimensional and three-dimensional discrete element modelling approach[J].International Journal of Pavement Engineering,2010,11(5):381.
69 You Z,Buttlar W G. Discrete element modeling to predict the modulus of asphalt concrete mixtures[J].Journal of Materials in Civil Engineering,2004,16(2):140.
70 Chen J, Huang B, Shu X, et al. DEM Simulation of laboratory compaction of asphalt mixtures using an open source code[J].Journal of Materials in Civil Engineering,2015,27(3):04014130.
71 Wan C, Zhang X N, He L F, et al. Numerical prediction method for dynamic modulus of asphalt mixture[J].China Journal of Highway and Transport,2012,25(4):16(in Chinese).
万成,张肖宁,贺玲凤,等.沥青混合料动态模量数值预测方法[J].中国公路学报,2012,25(4):16.
72 Manahiloh K N, Muhunthan B, Kayhanian M, et al. X-ray computed tomography and nondestructive evaluation of clogging in porous concrete field samples[J].Journal of Materials in Civil Engineering,2012,24(8):1103.
73 Wan Cheng. Research on 3D reconstruction and digital test of asphalt concrete based on X-ray CT and finite element method[D].Guangzhou: South China University of Technology,2010.
万成.基于X-ray CT和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学,2010.
74 Chen Z Q, Hutchinson T C. Image-based framework for concrete surface crack monitoring and quantification[J].Advances in Civil Engineering, DOI: 10.1155/2010/215295.
75 You Z, Liu Y, Dai Q. Three-dimensional microstructural-based discrete element viscoelastic modeling of creep compliance tests for asphalt mixtures[J].Journal of Materials in Civil Engineering,2011,23(1):79.
76 Kim H, Buttlar W G. Discrete fracture modeling of asphalt concrete[J].International Journal of Solids and Structures,2009,46(13):2593.
[1] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[2] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[3] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[4] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[5] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[6] 常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
[7] 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述*[J]. 《材料导报》期刊社, 2017, 31(11): 109-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed