Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 155-159    https://doi.org/10.11896/j.issn.1005-023X.2017.018.031
  计算模拟 |
基于离散元方法的沥青混合料力链演化及分布量化分析*
常明丰1, 黄平明2, 裴建中3, 张久鹏3
1 长安大学材料科学与工程学院,西安 710061;
2 长安大学公路学院,西安 710064;
3 长安大学特殊地区公路工程教育部重点实验室,西安 710064
Quantitative Analysis on Evolution and Distribution of Force Chain for Asphalt Mixture Using Discrete Element Method
CHANG Mingfeng1, HUANG Pingming2, PEI Jianzhong3, ZHANG Jiupeng3
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710061;
2 School of Highway, Chang’an University, Xi’an 710064;
3 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 4584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究沥青混合料内部颗粒间力链的演化及分布规律,以AC-13沥青混合料作为研究对象,利用离散元方法重构沥青混合料数字试件,模拟简单性能试验,提取试件内部颗粒间的力链信息进行力链演化、概率分布和角度分布分析。结果表明,通过比较预测结果和实测结果,基于离散元方法重构的AC-13沥青混合料细观模型用于模拟其细观力学特性是可行的。试件内部力链空间分布具有各向异性,以垂直方向的压力力链为主,承受大部分的半正弦荷载。法向力链概率分布随加载时间的变化规律基本一致,法向接触力与平均法向接触力比值f最小时,概率分布出现最大值,f=1.75时,概率分布再次达到峰值,然后逐渐减小并趋于稳定。法向力链角度分布主要位于90°和270°附近,第一、二象限的角度分布比例远大于第三、四象限,60~120°、30~150°中法向力链角度分布比例均大于70%,最小为72.733%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常明丰
黄平明
裴建中
张久鹏
关键词:  沥青混合料  力链演化  力链概率分布  力链角度分布  离散元方法    
Abstract: AC-13 asphalt mixture was taken as the research object to investigate the evolution and distribution laws of force chains inside the asphalt mixture. A digital specimen of AC-13 asphalt mixture was reconstructed using the discrete element method (DEM) to simulate the simple performance test (SPT). Next, the force chain information among aggregate particles was extracted to analyze the evolution, probability distribution and angle distribution of force chains. The results indicated that the AC-13 mesoscopic model reconstructed using the discrete element method was feasible to simulate the mesoscopic mechanical properties of asphalt mixture by comparing the predicted results and laboratory test results. The spatial distributions of force chains are anisotropic, which were mainly the compressed force chains in vertical direction and sustained most of the Haversine loading. The probability distributions of normal force chains which varied with loading time were consistent. The probability distribution had the maximum value at the minimum f (the ratio of normal contact force and mean normal contact force). At f=1.75, it appeared the peak value again, then gradually decreased and tended to be stable. In addition, the angle distributions of normal force chains mainly located near 90° and 270°, the angle distribution proportions in the first and second quadrant were much larger than those in the third and fourth quadrant. Also, the angle distribution proportions in 60—120° and 30—150° were both larger than 70% with the minimum value of 72.733%.
Key words:  asphalt mixture    evolution of force chain    probability distribution of force chain    angle distribution of force chain    discrete element method
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB303  
  U416.217  
基金资助: 国家自然科学基金(51408047;51378073;51408043);中央高校基本科研业务费专项资金(310831161002;310821153502;310821152003)
作者简介:  常明丰:男,1982年生,博士, 讲师,研究方向为沥青混合料的细观力学及数值模拟 E-mail:mfchang99@126.com
引用本文:    
常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
CHANG Mingfeng, HUANG Pingming, PEI Jianzhong, ZHANG Jiupeng. Quantitative Analysis on Evolution and Distribution of Force Chain for Asphalt Mixture Using Discrete Element Method. Materials Reports, 2017, 31(18): 155-159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.031  或          http://www.mater-rep.com/CN/Y2017/V31/I18/155
1 Bouchaud J P, et al. Stress distribution in granular media and nonlinear wave equation[J]. J Physique I, 1995,5(6):639.
2 Wittmer J P, Cates M E, Claudin P. Stress propagation and arching in static sandpiles[J]. J Physique I, 1997,7(1):39.
3 Cates M E, et al. Development of stresses in cohesionless poured sand[J]. Phil Trans R Soc A, 1998,356(1747):2535.
4 Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming, force chains and fragile matter[J]. Phys Rev Lett, 1998,81(9):1881.
5 Claudin P, Bouchaud J P. Models of stress fluctuations in granular media[J]. Phys Rev E, 1998,57(4):4441.
6 Tordesillas A, Shi J Y, Muhlhaus H B. Noncoaxiality and force chain evolution[J]. Int J Eng Sci, 2009,47:1386.
7 Hunt G W, Tordesillas A, Green S C, et al. Force-chain buckling in granular media: A structural mechanics perspective[J]. Phil Trans Ser A: Math Phys Eng Sci, 2010,368(1910):249.
8 Hunt G W, Hammond J. Mechanics of shear banding in a regula-rized two dimensional model of a granular medium[J]. Phil Mag, 2012,92(28-30):3483.
9 Howell D, Behringer R P. Stress fluctuations in a 2D granular couette experiment: A continuous transition[J]. Phys Rev Lett, 1999,82(26):5241-5244.
10Majmudar T S, Behringer R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 2005,435(23):1079.
11Yi Chenhong, Liu Yuan, Miao Tiaode, et al. Force transmission in three-dimensional hexagonal-close-packed granular arrays with defect submitted to a point load[J]. Granular Matter, 2007,9(3):195.
12Miao Tiaode, Yi Chenhong, Qi Yanli, et al. Force transmission in three-dimensional hexagonal-close-packed granular arrays submitted to a point load [J]. Acta Phys Sin, 2007,56(8):4713(in Chinese).
苗天德,宜晨虹,齐艳丽,等. 集中力作用下球形颗粒六角密排堆积体的传力研究[J].物理学报,2007,56(8):4713.
13Tordesillas A, et al. Stress-dilatancy and force chain evolution[J]. Int J Numer Anal Methods Geomech, 2010,35(2):264.
14Tordesillas A, Pucilowskia S, Sibille L, et al. Multiscale characterisation of diffuse granular failure[J]. Phil Mag, 2012,92(36):4547.
15Wang D M, Zhou Y H. Statistics of contact force network in dense granular matter[J]. Particuology, 2010,8(2):133.
16Sun Qicheng, Jin Feng, Wang Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2D [J]. Acta Phys Sin, 2010,59(1):30(in Chinese).
孙其诚,金峰,王光谦,等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报,2010,59(1):30.
17Bi Zhongwei, Sun Qicheng, Liu Jianguo, et al. Development of shear band in a granular material in biaxial tests [J]. Acta Phys Sin, 2011,60(3):1(in Chinese).
毕忠伟,孙其诚,刘建国,等. 双轴压缩下颗粒物质剪切带的形成与发展[J]. 物理学报,2011,60(3):1.
18Chen Hui, Liu Yilun, Zhao Xianqiong, et al. Analysis on avalanching motion and force chains of bed material within rotating cylinder based on discrete element method [J]. J Zhejiang Univ: Eng Sci, 2014,48(12):2277(in Chinese).
陈辉,刘义伦,赵先琼,等. 基于离散单元法的回转窑物料崩落运动及接触力链研究[J].浙江大学学报:工学版,2014,48(12):2277.
19Chen Hui, Liu Yilun, et al. Numerical experiments on transverse motion and force chains of solids in rotating cylinders [J]. J Central South Univ: Sci Technol, 2015,46(7):2446(in Chinese).
陈辉,刘义伦,等. 回转窑截面物料运动及力链结构的数值试验[J]. 中南大学学报:自然科学版,2015,46(7):2446.
20Wu Diping, Li Xingxiang, Qin Qin, et al. Study on mechanical behavior of the transverse processing on a granular matter layer [J]. Acta Phys Sin, 2014,63(9):098201(in Chinese).
吴迪平,李星祥,秦勤,等. 离散颗粒层被横向推移过程中的力学行为研究[J]. 物理学报,2014,63(9):098201.
21Tordesillas A, Lin Q, Zhang J, et al. Structural stability and jamming of self-organized cluster conformations in dense granular materials[J]. J Mech Phys Solids, 2011,59(2):265.
22Tordesillas A, Steer C A H, Walker D M. Force chain and contact cycle evolution in a dense granular material[J]. Nonlinear Processes Geophys, 2014,21(2):505.
23You Z P, Buttlar W G. Micromechanical modeling approach to predict compressive dynamic moduli of asphalt mixture using the distinct element method[J]. J Transport Res Board, 2006,1970:73.
24Liu Y, You Z P. Visualization and simulation of asphalt concrete with randomly generated three-dimensional models[J]. J Comput Civil Eng, 2009,23(6):340.
25Liu Y, Dai Q L, You Z P. Viscoelastic model for discrete element simulation of asphalt mixtures[J]. J Eng Mech, 2009,135(4):324.
[1] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[2] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[3] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[4] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[5] 韦万峰, 郭鹏, 唐伯明. 再生沥青混合料新-旧沥青扩散混合效率研究综述*[J]. 《材料导报》期刊社, 2017, 31(11): 109-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed