Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4381-4385    https://doi.org/10.11896/j.issn.1005-023X.2018.24.031
  高分子与聚合物基复合材料 |
表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征
刘自力, 林嘉伟, 罗扬, 任丽, 左建良
广州大学化学化工学院,广州 510006
Preparation and Characterization of Reduced Graphene Oxide@LA-PA Composite Phase Change Material Prepared by Surfactant and Ultrasonic Dispersion
LIU Zili, LIN Jiawei, LUO Yang, REN Li, ZUO Jianliang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1363KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变储能材料因能有效地解决能量供求中时间和空间不匹配的矛盾而备受关注。本实验首先采用熔融共混法制得月桂酸(LA)-棕榈酸(PA)低共熔混合物后,将其与还原氧化石墨烯(RGO)混合,通过超声分散制得还原氧化石墨烯@月桂酸-棕榈酸(RGO@LA-PA)复合相变材料。FT-IR、Raman、SEM、DSC和形貌稳定性的分析结果表明,RGO与LA-PA是以物理方式结合,所添加的RGO能对材料形成均匀包覆,仅1%(质量分数)的RGO就能使其导热系数提升20%为0.426 W·m-1·K-1,相变潜热为159.9 J·g-1,起始分解温度提高2 ℃;经100次热循环后,其相变潜热仅下降2%,说明RGO包覆相变材料后提高了其导热性能,改善了其渗漏现象,同时该复合相变材料还具有良好的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘自力
林嘉伟
罗扬
任丽
左建良
关键词:  低共熔混合物  石墨烯  复合相变材料  导热系数  热性能    
Abstract: Phase change material for energy conversion can effectively solve the problem of mismatch between time and space in energy supply and demand, which is a matter of great concern.Firstly, lauric acid-palmitic acid (LA-PA) eutectic mixture was prepared by melt blending method. And then, reduced graphene oxide @lauric acid-palmitic acid (RGO@LA-PA) composite phase change material was prepared by ultrasonic dispersion method.The structure and thermal performance of prepared RGO@LA-PA composite phase change material were characterized by FT-IR, Raman, SEM, DSC, thermal cycling test and morphology stability test. The results showed that the RGO and LA-PA eutectic mixture were combined in a physical way. The thermal conductivity and latent heats of RGO@LA-PA composite phase change material were improved 20% to 0.426 W·m-1·K-1 and 159.9 J·g-1 by adding 1wt% RGO, respectively. In thermal cycling test, the latent heats of RGO@LA-PA reduced 2% after 100 times thermal cycle, which indicated that the RGO could improve the thermal conductivity of the phase change material and eliminate the leakage phenomenon and the RGO@LA-PA had a good thermal reliability.
Key words:  eutectic mixture    graphene    composite phase change material    thermal conductive    thermal proper
                    发布日期:  2019-01-23
ZTFLH:  TB332  
基金资助: 国家自然科学基金(21676060);应用表面与胶体化学教育部重点实验室开放课题(2016017);广州市产学研协同创新重大专项(201704020005)
作者简介:  刘自力:男,1965年生,博士,教授,硕士研究生导师,主要从事新能源材料、工业催化、废水资源化利用等的研究 E-mail:13342896671@163.com
引用本文:    
刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
LIU Zili, LIN Jiawei, LUO Yang, REN Li, ZUO Jianliang. Preparation and Characterization of Reduced Graphene Oxide@LA-PA Composite Phase Change Material Prepared by Surfactant and Ultrasonic Dispersion. Materials Reports, 2018, 32(24): 4381-4385.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.031  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4381
1 Sharma R K, Ganesan P, Tyagi V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J].Energy Conversion and Management,2015,95:193.
2 Elefsiniotis A, Kokorakis N, Becker T, et al. A novel high-temperature aircraft-specific energy harvester using PCMs and state of the art TEGs[J].Materials Today Proceedings,2015,2(2):814.
3 Osterman E, Tyagi V V, Butala V, et al. Review of PCM based cooling technologies for buildings[J].Energy and Buildings,2012,49(2):37.
4 Falco M D, Capocelli M, Giannattasio A. Performance analysis of an innovative PCM-based device for cold storage in the civil air conditioning[J].Energy and Buildings,2016,122:1.
5 Aitlahbib F, Chehouani H. Numerical study of heat transfer inside a keeping warm system (KWS) incorporating phase change material[J].Applied Thermal Engineering,2015,75:73.
6 Zeng J L, Sun S L, Zhou L, et al. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells[J].Journal of Thermal Analysis and Calorimetry,2017,129(15):1.
7 Shen Q, Ouyang J, Zhang Y, et al. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage[J].Applied Clay Science,2017,146:14.
8 Li Y, Yan H, Wang Q, et al. Structure and thermal properties of decanoic acid/expanded graphite composite phase change materials[J].Journal of Thermal Analysis and Calorimetry,2017,128(3):1.
9 Cabeza L F, Mehling H, Hiebler S, et al. Heat transfer enhancement in water when used as PCM in thermal energy storage[J].Applied Thermal Engineering,2002,22(10):1141.
10 Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials(PCMs)[J].Solar Energy,2010,84(8):1402.
11 Zhang T, Yu J Z. Heat transfer of channel type wheel heat exchan-ger under frosting condition[J].Journal of Refrigeration,2007,28(6):13(in Chinese).
张涛,余建祖.相变装置中填充泡沫金属的传热强化分析[J].制冷学报,2007,28(6):13.
12 Hasse C, Grenet M, Bontemps A, et al. Realization, test and mode-lling of honeycomb wallboards containing a phase change material[J].Energy and Building,2011,43(1):232.
13 Cao X R, Cui H T, Jiang J Z. Numerical simulation on heat transfer of phase change in heat storage ball filled with metal foam[J].Hebei Industrial Science and Technology,2011,28(1):1(in Chinese).
曹向茹,崔海亭,蒋精智.泡沫金属相变材料凝固传热过程的数值分析[J].河北工业科技,2011,28(1):1.
14 Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J].Solar Energy Materials and Solar Cells,2009,93(5):571.
15 Zhang Z, Shi G, Wang S, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J].Renewable Energy,2013,50(3):670.
16 Wang W, Yang X, Fang Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy sto-rage[J].Applied Energy,2009,86(9):1479.
17 Sari A, Karaipekli A. Preparation,thermal properties and thermal reliability of capric acid/expanded perlite compo-site for thermal energy storage[J].Materials Chemistry and Physics,2008,109(2-3):459.
18 Wang Y, Xia T D, Zheng H, et al. Stearic acid/silica fume compo-site as form-stable phase change material for thermal energy storage[J].Energy and Buildings,2011,43(9):2365.
19 Karaipekli A, Sari A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J].Solar Energy,2009,83(3):323.
20 Chen S, Moore A L, Cai W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in va-cuum and gaseous environments[J].ACS Nano,2011,5(1):321.
21 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902.
22 Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J].Nature Nanotechnology,2013,8(4):235.
23 Zhang N, Yuan Y, Du Y, et al. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage[J].Energy,2014,78:950.
24 Zhou J W, Cheng Y L, Wang C B, et al. Study on steric acid/graphene oxide composite phase-change material for thermal storage[J].New Chemical Material,2013,41(6):47(in Chinese).
周建伟,程玉良,王储备,等.硬脂酸/氧化石墨烯复合相变储热材料研究[J].化工新型材料,2013,41(6):47.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[6] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[7] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[8] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[12] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[13] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed