Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4374-4380    https://doi.org/10.11896/j.issn.1005-023X.2018.24.030
  高分子与聚合物基复合材料 |
“龟裂”纳米纤维片/玻纤织物复合预制体的层间渗流特性
吴宁1, 杨洁1, 高杨1, 乔志勇2, 郑姗姗1, 裴晓园1, 焦亚男1
1 天津工业大学纺织学院复合材料研究所,先进纺织复合材料教育部重点实验室,天津 300387;
2 扬州亿斯特新材料科技有限公司,扬州 211400
Permeability Property of “Cracked” Nanofiber Sheets/Glass Fiber Composite Preform
WU Ning1, YANG Jie1, GAO Yang1, QIAO Zhiyong2, ZHENG Shanshan1, PEI Xiaoyuan1, JIAO Yanan1
1 Key Laboratory of Advanced Textile Composites of Ministry of Education, Institute of Textile Composites, College of Textile, Tianjin Polytechnic University, Tianjin 300387;
2 Yangzhou East New Materials Technology Co., Ltd, Yangzhou 211400
下载:  全 文 ( PDF ) ( 3210KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结合静电纺丝技术和高温煅烧方法制备了“龟裂”TiO2纳米纤维/玻纤织物复合预制体,使用光学显微镜对TiO2纳米纤维片的制备工艺进行了优选,采用径向法测量了含有不同厚度TiO2纳米纤维片复合预制体的渗透率,重点分析了层间“龟裂”纳米纤维片对玻纤织物预制体渗流模式的影响。结果表明,纺丝溶胶液用量为1.0~4.0 mL时可在玻纤织物表面制备出成型良好且附着力强的“龟裂”纳米纤维片;与空白玻纤预制体相比,复合预制体的主渗透率增加了2~3个数量级;复合预制体表现出的各向异性程度随溶胶液用量的增加呈增大的趋势,宏微观流动存在同步性,且随注入时间的延长,同步性更加显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴宁
杨洁
高杨
乔志勇
郑姗姗
裴晓园
焦亚男
关键词:  “龟裂”纳米纤维片  玻纤预制体  径向流动实验  渗透率  渗流模式    
Abstract: The “cracked” TiO2 nanofiber sheets/glass fiber composite preforms were fabricated by electrospinning and high temperature sintering in this paper. The preparation process of TiO2 nanofiber sheets was optimized by optical microscope. The permeability of composite preforms incorporated with TiO2 nanofiber sheets with different thickness was measured by the radial flow experiments with emphasis on the effect of the "cracked" nanofiber sheets on the impregnating pattern of glass-fiber preforms. The results show that the nanofiber sheets with good cracking morphology and high adhesion can be fabricated on the surface of glass fiber with the amount of spinning sols of 1.0—4.0 mL. Compared with the blank glass-fiber preforms, the principal permeabilities of composite preforms increase by two or three orders of magnitude. The anisotropy extent of composite preforms increase with the increa-sing of the amount of spinning sols. The Synchronization of macro-and micro-flow exist in the composite preforms, meanwhile, it increase with the filling time.
Key words:  “cracked” nanofiber sheets    glass fiber composite preform    radial flow experiments    permeability    impregnating pattern
                    发布日期:  2019-01-23
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51403153);天津市科技支撑计划重点项目(15ZCZDGX00340);中国博士后基金(2016M591391);天津市高等学校创新团队项目(TD13-5043)
作者简介:  吴宁:男,1981年生,博士,副研究员,主要研究方向为高性能纤维与复合材料 E-mail:wuning@tjpu.edu.cn
引用本文:    
吴宁, 杨洁, 高杨, 乔志勇, 郑姗姗, 裴晓园, 焦亚男. “龟裂”纳米纤维片/玻纤织物复合预制体的层间渗流特性[J]. 材料导报, 2018, 32(24): 4374-4380.
WU Ning, YANG Jie, GAO Yang, QIAO Zhiyong, ZHENG Shanshan, PEI Xiaoyuan, JIAO Yanan. Permeability Property of “Cracked” Nanofiber Sheets/Glass Fiber Composite Preform. Materials Reports, 2018, 32(24): 4374-4380.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.030  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4374
1 Li G, Li P, Yu Y H, et al. Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers[J].Materials Letters,2008,62(3):511.
2 Kelkar A D, Mohan R, Bolick R, et al. Effect of nanoparticles and nanofibers on Mode Ⅰ fracture toughness of fiber glass reinforced polymeric matrix composites[J].Materials Science and Engineering B,2010,168(1-3):85.
3 Magniez K, Chaffraix T, Fox B. Toughening of a carbon-fibre composite using electrospun poly(hydroxyether of bisphenol A) nanofibrous membranes through inverse phase separation and interdomain etherification[J].Materials,2011,4(11):1967.
4 Palazzetti R, Zucchelli A, Trendafilova I. The self-reinforcing effect of Nylon6,6 nano-fibres on CFRP laminates subjected to low velocity impact[J].Composite Structures,2013,106(12):661.
5 Arai M, Hirokawa J I, Hanamura Y, et al. Characteristic of mode Ⅰ fatigue crack propagation of CFRP laminates toughened with CNF interlayer[J].Composites Part B,2014,65(10):26.
6 Xing L, Wu N, Jiao Y N. Research status of eiectrospun nanofibers for enhancing and toughening composite laminates[J].Materials Review A: Review Papers,2013,27(8):63(in Chinese).
邢亮,吴宁,焦亚男.静电纺纳米纤维对复合材料层间增强增韧的研究进展[J].材料导报:综述篇,2013,27(8):63.
7 Dzenis Y A, Reneker D H. Delamination-resistant composites prepared by small diameter fiber reinforcement at ply interfaces: Ame-rica, US6265333B1[P]. 2001-07-24.
8 Arai M, Noro Y, Sugimoto K I, et al. Mode I and mode Ⅱ interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer[J].Composites Science and Technology,2008,68(2):516.
9 Schoenmaker B D, Heijden S V D, Baere I D, et al. Effect of electrospun polyamide 6 nanofibres on the mechanical properties of a glass fibre/epoxy composite[J].Polymer Testing,2013,32(8):1495.
10 Liu L, Huang Z M, He C L,et al. Mechanical performance of laminated composites incorporated with nanofibrous membranes[J].Materials Science and Engineering A,2006,435-436(11):309.
11 Liu L, Liang Y M, Xu G Y, et al. Mode Ⅰ interlaminar fracture of composite laminates incorporating with ultrathin fibrous sheets[J].Journal of Reinforced Plastics and Composites,2008,27(11):1147.
12 Gao Y, Wu N,Zhuang X P, et al. Effects of interlaminar nanofibrous membranes on permeability property of glass-fiber preform[J].Acta Materiae Compositae Sinica,2017,34(6):1230(in Chinese).
高杨,吴宁,庄旭品,等.层间纳米纤维膜对玻纤预制体渗流特性的影响[J].复合材料学报,2017,34(6):1230.
13 吴宁,邢亮,陈利,等.一种同步增强增韧玻纤树脂基复合材料的制备方法:中国,CN103287031A[P].2013-09-11.
14 Adams K L, Russel W B, Rebenfeld L. Radialpenetration of a viscous liquid into a planar anisotropic porous medium[J].International Journal of Multiphase Flow,1988,14(2):203.
15 Chan A W, Hwang S T. Anisotropic in-plane permeability of fabric media[J].Polymer Engineering & Science,1991,31(16):1233.
16 Roy T, Pillai K M. Characterization of dual-scale fiber mats for unsaturated flow in liquid composite molding[J].Polymer Composites,2005,26(6):756.
17 Dragnevski K I, Routh A F, Murray M W, et al. Cracking of drying latex films: An ESEM experiment[J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(11):7747.
18 Jenkins D R. Determination of crack spacing and penetration due to shrinkage of a solidifying layer[J].International Journal of Solids and Structures,2009,46(5):1078.
[1] 周燕燕, 周鑫, 陈长安, 王维, 王占雷, 饶咏初, 梁传辉, 周元林. 氢、氘在铌膜中的渗透性研究[J]. 材料导报, 2018, 32(15): 2596-2600.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed