Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 135-138    https://doi.org/10.11896/j.issn.1005-023X.2017.021.019
  多孔材料 |
基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*
张新铭1, 陈丹阳1, 王花2
1 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;
2 中机中联工程有限公司,重庆 400041
Simulated Analysis of Thermal Conductivity of Porous Metal Foams with 2-D Voronoi Model
ZHANG Xinming1, CHEN Danyang1, WANG Hua2
1 Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400030;
2 China CMCU Engineering Corporation, Chongqing 400041
下载:  全 文 ( PDF ) ( 1419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔金属材料作为新型功能材料具有密度低、强度高、导热性能优良等特性,应用前景广阔,受到越来越多的关注。多孔材料的有效导热系数与随机孔隙结构相关,仅用孔隙率不足以描述真实材料的孔隙结构。采用二维Voronoi模型,定义孔隙随机度S和孔隙率ε作为孔隙结构参数,通过调节核点位置偏移因子α和边宽系数β改变模型的随机度S和孔隙率ε,分析随机度S和孔隙率ε对相对有效导热系数k*的影响。结果表明,随机度和孔隙率同时影响多孔泡沫材料的有效导热系数,当随机度S一定时,随着孔隙率ε增大,材料的有效导热系数k*减小;当孔隙率ε一定时,随着随机度S的增大,有效导热系数k*减小。根据大样本的有限元数值模拟结果,拟合了有效导热系数由孔隙率和随机度组成的函数表达式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张新铭
陈丹阳
王花
关键词:  多孔泡沫金属  Voronoi  有效导热系数  随机度  孔隙率    
Abstract: Porous metal foams is a new kind of functional material with low density, high mechanical strength, high thermal conductivity and other excellent properties. Porous metal foam has a wide application prospect and has been widely concerned and studied. The effective thermal conductivity (k*) of porous material is related to the pore structure. Only the porosity (ε) is not enough to describe the pore structure of the real material. Based on 2-D Voronoi model in this paper, the randomness (S) and porosity of models were defined to describe the pore structure parameters. By adjusting the deviation factor (α) and edge width coefficient (β) of the model to change the range of randomness and porosity. The influence of the randomness and porosity on the effective thermal conductivity of the model was analyzed,which showed that the randomness and porosity affect the effective thermal conductivity. Results showed that randomness increasing leads to effective thermal conductivity decreasing. From the simulations results of random models, it is pointed that the relative effective thermal conductivity of porous metal foam material can be expressed as power function of porosity and randomness.
Key words:  porous metal foams    Voronoi    effective thermal conductivity    randomness    porosity
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
  TK124  
基金资助: *重庆市科技攻关计划资助项目(81826);“211工程”三期建设项目(S-09101);中央高校基本科研业务费资助项目(CDJXS11140014)
作者简介:  张新铭:男,1953年生,教授,博士研究生导师,主要研究方向为工程热物理领域的工程应用 E-mail:xmzhang@cqu.edu.cn
引用本文:    
张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
ZHANG Xinming, CHEN Danyang, WANG Hua. Simulated Analysis of Thermal Conductivity of Porous Metal Foams with 2-D Voronoi Model. Materials Reports, 2017, 31(21): 135-138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.019  或          http://www.mater-rep.com/CN/Y2017/V31/I21/135
1 Wang Jing, Yang Jun, Zhang Jian. Research progress in preparation techniques of porous metal materials[J]. Ordnance Mater Sci Eng, 2013(6):134.
王静,杨军,张建. 多孔金属材料制备技术研究进展[J]. 兵器材料科学与工程, 2013(6):134.
2 Fang Y C, Wang H, Zhou Y, et al. Development of some new porous metal materials[J]. Mater Sci Forum, 2007,534-536:949.
3 Burg M W D V D, Shulmeister V, Geissen E V D, et al. On the linear elastic properties of regular and random open-cell foam models[J]. J Cellular Plastics, 1997, 33(1):31.
4 Zhu H X, Thorpe S M, Windle A H. The geometrical properties of irregular two-dimensional Voronoi tessellations[J]. Philosophical Magazine A, 2001, 81(12):2765.
5 Li Z, Zhang J, Wang Z, et al. Study on the thermal properties of closed-Cell metal foams based on Voronoi random models[J]. Numerical Heat Transfer Appl, 2013, 64(12):1038.
6 Tang L, Shi X, Zhang L, et al. Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams[J]. Acta Mech, 2014, 225(4):1361.
7 Shi Xuepeng.Modeling and constitutive relationshipof metallic foams considering geometric irregularity[D]. Guangzhou:South China University of Technology, 2014.
时学鹏.考虑几何不规则度的泡沫金属建模及其本构关系研究[D]. 广州:华南理工大学, 2014.
8 Klett J W, Mcmillan A D, Gallego N C, et al. The role of structure on the thermal properties of graphitic foams[J]. J Mater Sci, 2004, 39(11):3659.
9 Leong K C, Li H Y. Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model[J]. Int J Heat Mass Transfer, 2011,54(25):5491.
10Hutter C, Büchi D, Zuber V, et al. Heat transfer in metal foams and designed porous media[J]. Chem Eng Sci, 2011,66(17):3806.
11Liu Shuang, Zhang Boming, Xie Weihua. Study on effective thermal conductivity of open metal foam[J]. J Funct Mater, 2009,40(5):794.
刘双, 张博明, 解维华. 开孔金属泡沫有效热导率的理论分析与实验研究[J]. 功能材料, 2009,40(5):794.
[1] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[2] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[3] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[4] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[5] 吴其胜,陈宝锐,诸华军,闵治安. 热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1701-1706.
[6] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[7] 马昆林, 贺炯煌, 龙广成, 党晗菲, 谢友均. 蒸养温度效应及其对水泥基材料热伤损的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 171-176.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed