Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 135-138    https://doi.org/10.11896/j.issn.1005-023X.2017.021.019
  多孔材料 |
基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*
张新铭1, 陈丹阳1, 王花2
1 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;
2 中机中联工程有限公司,重庆 400041
Simulated Analysis of Thermal Conductivity of Porous Metal Foams with 2-D Voronoi Model
ZHANG Xinming1, CHEN Danyang1, WANG Hua2
1 Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400030;
2 China CMCU Engineering Corporation, Chongqing 400041
下载:  全 文 ( PDF ) ( 1419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔金属材料作为新型功能材料具有密度低、强度高、导热性能优良等特性,应用前景广阔,受到越来越多的关注。多孔材料的有效导热系数与随机孔隙结构相关,仅用孔隙率不足以描述真实材料的孔隙结构。采用二维Voronoi模型,定义孔隙随机度S和孔隙率ε作为孔隙结构参数,通过调节核点位置偏移因子α和边宽系数β改变模型的随机度S和孔隙率ε,分析随机度S和孔隙率ε对相对有效导热系数k*的影响。结果表明,随机度和孔隙率同时影响多孔泡沫材料的有效导热系数,当随机度S一定时,随着孔隙率ε增大,材料的有效导热系数k*减小;当孔隙率ε一定时,随着随机度S的增大,有效导热系数k*减小。根据大样本的有限元数值模拟结果,拟合了有效导热系数由孔隙率和随机度组成的函数表达式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张新铭
陈丹阳
王花
关键词:  多孔泡沫金属  Voronoi  有效导热系数  随机度  孔隙率    
Abstract: Porous metal foams is a new kind of functional material with low density, high mechanical strength, high thermal conductivity and other excellent properties. Porous metal foam has a wide application prospect and has been widely concerned and studied. The effective thermal conductivity (k*) of porous material is related to the pore structure. Only the porosity (ε) is not enough to describe the pore structure of the real material. Based on 2-D Voronoi model in this paper, the randomness (S) and porosity of models were defined to describe the pore structure parameters. By adjusting the deviation factor (α) and edge width coefficient (β) of the model to change the range of randomness and porosity. The influence of the randomness and porosity on the effective thermal conductivity of the model was analyzed,which showed that the randomness and porosity affect the effective thermal conductivity. Results showed that randomness increasing leads to effective thermal conductivity decreasing. From the simulations results of random models, it is pointed that the relative effective thermal conductivity of porous metal foam material can be expressed as power function of porosity and randomness.
Key words:  porous metal foams    Voronoi    effective thermal conductivity    randomness    porosity
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
  TK124  
基金资助: *重庆市科技攻关计划资助项目(81826);“211工程”三期建设项目(S-09101);中央高校基本科研业务费资助项目(CDJXS11140014)
作者简介:  张新铭:男,1953年生,教授,博士研究生导师,主要研究方向为工程热物理领域的工程应用 E-mail:xmzhang@cqu.edu.cn
引用本文:    
张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
ZHANG Xinming, CHEN Danyang, WANG Hua. Simulated Analysis of Thermal Conductivity of Porous Metal Foams with 2-D Voronoi Model. Materials Reports, 2017, 31(21): 135-138.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.019  或          https://www.mater-rep.com/CN/Y2017/V31/I21/135
1 Wang Jing, Yang Jun, Zhang Jian. Research progress in preparation techniques of porous metal materials[J]. Ordnance Mater Sci Eng, 2013(6):134.
王静,杨军,张建. 多孔金属材料制备技术研究进展[J]. 兵器材料科学与工程, 2013(6):134.
2 Fang Y C, Wang H, Zhou Y, et al. Development of some new porous metal materials[J]. Mater Sci Forum, 2007,534-536:949.
3 Burg M W D V D, Shulmeister V, Geissen E V D, et al. On the linear elastic properties of regular and random open-cell foam models[J]. J Cellular Plastics, 1997, 33(1):31.
4 Zhu H X, Thorpe S M, Windle A H. The geometrical properties of irregular two-dimensional Voronoi tessellations[J]. Philosophical Magazine A, 2001, 81(12):2765.
5 Li Z, Zhang J, Wang Z, et al. Study on the thermal properties of closed-Cell metal foams based on Voronoi random models[J]. Numerical Heat Transfer Appl, 2013, 64(12):1038.
6 Tang L, Shi X, Zhang L, et al. Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams[J]. Acta Mech, 2014, 225(4):1361.
7 Shi Xuepeng.Modeling and constitutive relationshipof metallic foams considering geometric irregularity[D]. Guangzhou:South China University of Technology, 2014.
时学鹏.考虑几何不规则度的泡沫金属建模及其本构关系研究[D]. 广州:华南理工大学, 2014.
8 Klett J W, Mcmillan A D, Gallego N C, et al. The role of structure on the thermal properties of graphitic foams[J]. J Mater Sci, 2004, 39(11):3659.
9 Leong K C, Li H Y. Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model[J]. Int J Heat Mass Transfer, 2011,54(25):5491.
10Hutter C, Büchi D, Zuber V, et al. Heat transfer in metal foams and designed porous media[J]. Chem Eng Sci, 2011,66(17):3806.
11Liu Shuang, Zhang Boming, Xie Weihua. Study on effective thermal conductivity of open metal foam[J]. J Funct Mater, 2009,40(5):794.
刘双, 张博明, 解维华. 开孔金属泡沫有效热导率的理论分析与实验研究[J]. 功能材料, 2009,40(5):794.
[1] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[2] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[3] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[4] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[5] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[6] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[7] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[8] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[9] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[10] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[11] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[12] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[13] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[14] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[15] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed