Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110286-7    https://doi.org/10.11896/cldb.22110286
  高分子与聚合物基复合材料 |
搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响
元强1, 钟福文1, 姚灏1,*, 左胜浩1, 谢宗霖1, 姜孟杰2
1 中南大学土木工程学院,长沙 410075
2 南京溧水华侨城实业有限公司,南京210046
Effect of Mixing Technique on Performance of High Dosage Styrene-Butadiene Rubber Latex Modified Sulphoaluminate Cement
YUAN Qiang1, ZHONG Fuwen1, YAO Hao1,*, ZUO Shenghao1, XIE Zonglin1, JIANG Mengjie2
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 Nanjing Lishui Overseas Chinese Town Industrial Co., Ltd., Nanjing 210046, China
下载:  全 文 ( PDF ) ( 7822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了搅拌速度与搅拌时间对高掺量丁苯乳液改性硫铝酸盐水泥砂浆的匀质性、含气量、流变性能、早期强度等宏观性能的影响,采用TGA、BET等微观手段研究了硬化砂浆的水化程度和孔隙特征。结果表明:延长搅拌时间、提高搅拌速率均可改善砂浆的匀质性和力学强度。但以176 r/min搅拌时,延长搅拌时间会提高新拌砂浆含气量,增大硬化砂浆“凝胶孔”含量,抑制水泥前1 h的水化。以108 r/min搅拌时,延长搅拌时间则促进水泥前1 h的水化。延长搅拌时间和提升搅拌速率阻碍砂浆絮凝,破坏水泥颗粒桥接,显著降低结构构筑速率。延长搅拌时间,砂浆屈服应力和塑性黏度降低。优化搅拌工艺,有助于为充填层修补砂浆的搅拌规范制定提供重要参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
元强
钟福文
姚灏
左胜浩
谢宗霖
姜孟杰
关键词:  硫铝酸盐水泥  搅拌工艺  丁苯乳液  流变性能  孔隙率    
Abstract: The effects of mixing speed and mixing time on the homogeneity, air content, rheological properties and early strength of high dosage SBR latex modified sulphoaluminate cement (SAC) mortar were studied. The hydration degree and pore characteristics of hardened mortar were investigated by TGA and BET tests. The results show that the homogeneity and mechanical strength of mortar can be improved by prolonging the mixing time and increasing the mixing speed. However, when the mixing speed is up to 176 r/min, increasing the mixing time will increase the air content of fresh mortar, and lead to the improvement of the porosity of hardened mortar. Prolonging the mixing time and increasing the mixing speed hinder the flocculation of mortar and destroy the bridging of particles, significantly reducing the structural build-up rate. Prolonging the mixing time reduces the yield stress and plastic viscosity of mortar. Optimizing the mixing technique is helpful to provide important parameters for the formulation of mixing specifications for filling layer repair mortar.
Key words:  sulphoaluminate cement    mixing technique    styrene-butadiene rubber latex    rheological property    porosity
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU528.41  
基金资助: 国家重点研发计划 (2022YFB2603305);国家自然科学基金(52108261)
通讯作者:  * 姚灏,中南大学土木工程学院讲师、硕士研究生导师。2018年博士毕业于西北工业大学。主要从事工程维修与防护技术、混凝土化学外加剂、有机-无机复合材料等领域的研究工作。主持国家级自然科学基金青年项目、国家重点研发计划子课题等8项,以第一或通信作者发表论文20余篇。yaohao@csu.edu.cn   
作者简介:  元强,中南大学土木工程学院教授、博士研究生导师。国家自然科学基金委优秀青年基金、中国硅酸盐学会青年科技奖获得者。主持国家级、省部级、企业课题60余项,长期围绕高速铁路建造与养维关键水泥基材料、3D打印水泥基材料、新型结构材料、绿色低碳材料等领域开展研究,发表论文150余篇,出版英文专著/教材3部、中文专著/教材4部,应邀编写英文专著1章,申请/授权发明专利20余项。
引用本文:    
元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
YUAN Qiang, ZHONG Fuwen, YAO Hao, ZUO Shenghao, XIE Zonglin, JIANG Mengjie. Effect of Mixing Technique on Performance of High Dosage Styrene-Butadiene Rubber Latex Modified Sulphoaluminate Cement. Materials Reports, 2024, 38(9): 22110286-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110286  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22110286
1 Wang T. Research and application on CA mortar in ballastless slab track of high speed railway. Ph.D. Thesis, Wuhan University of Technology, China, 2008 (in Chinese).
王涛. 高速铁路板式无碴轨道CA砂浆的研究与应用. 博士学位论文, 武汉理工大学,2008.
2 Wu S L, Li H Y, Shi Y, et al. Railway Engineering, 2022, 62(1), 27 (in Chinese).
吴韶亮, 李海燕, 史懿, 等. 铁道建筑, 2022, 62(1), 27.
3 Lu W Y. Study on scheme optimization of railway maintenance skylight. Master's Thesis, Lanzhou Jiaotong University, China, 2018 (in Chinese).
陆维阳. 铁路施工天窗设置方案优化研究. 硕士学位论文, 兰州交通大学,2018.
4 Jezequel P H, Collin V. Cement and Concrete Research, 2007, 37, 1321.
5 Yang M, Jennings H M. Advanced Cement Based Materials, 1994, 2, 70.
6 Xie Y J, Zeng X H, Deng D H, et al. Journal of Building Materials, 2011, 14(2), 191 (in Chinese).
谢友均, 曾晓辉, 邓德华, 等. 建筑材料学报, 2011, 14(2), 191.
7 Hiremath P N, Yaragal S C. Construction and Building Materials, 2017, 141, 271.
8 Zeyad A M, Almalki A. Journal of Materials Research and Technology, 2020, 9 (3), 6101.
9 Akbar S J, Ghoddousi P, Sadaf A, et al. International Journal of Civil Engineering, 2020, 19, 339.
10 Ngo H T, Kaci A, Kadri E H, et al. Energy Procedia, 2017, 139, 810.
11 Li H Y, Wu S L, Luo G X, et al. Railway Engineering, 2012(5), 162 (in Chinese).
李海燕, 吴韶亮, 罗桂秀, 等. 铁道建筑, 2012(5), 162.
12 Duan F T, Wang T. Railway Engineering, 2013(7), 103 (in Chinese).
段峰涛, 王涛. 铁道建筑, 2013(7), 103.
13 Perrot A, Pierre A, Vitaloni S, et al. Materials and Structures, 2014, 48, 2315.
14 China Academy of Railway Sciences. Repairing mortar for concrete structure of high-speed railway:Q/CR 659-2018, Chinese National Railway Corporation, China, 2018 (in Chinese).
中国铁道科学研究院. 高速铁路混凝土结构用修补砂浆:Q/CR 659-2018, 中国铁路总公司, 2018.
15 Deng D H. Civil engineering materials, China Railway Publishing House, China, 2014, pp. 259 (in Chinese).
邓德华. 土木工程材料, 中国铁道出版社, 2014, pp. 259.
16 Chang Z, Long G, Xie Y, et al. Construction and Building Materials, 2022, 318, 126096.
17 Sun K K, Wang S, Zeng L, et al. Composites Part B: Engineering, 2019, 163, 282.
18 Bhattacharya S, Hebert D, Kresta S M. Chemical Engineering Research and Design, 2007, 85, 654.
19 Kong X, Emmerling S, Pakusch J, et al. Cement and Concrete Research, 2015, 75, 23.
20 Al-Neshawy F, Ojala T, Punkki J. Nordic Concrete Research, 2019, 60, 145.
21 Jiao D, De Schryver R, Shi C, et al. Cement and Concrete Composites, 2021, 122, 104152.
22 Huang T, Li B, Yuan Q, et al. Cement and Concrete Composites, 2019, 104, 103403.
23 Wang D, Zhang Y, Xiao J, et al. Construction and Building Materials, 2021, 305, 124598.
24 Huang F, Li H, Yi Z, et al. Construction and Building Materials, 2018, 166, 833.
25 Struble L J, Jiang Q Y. ACI Materials Journal, 2004, 101, 448.
26 Juilland P, Kumar A, Gallucci E, et al. Cement and Concrete Research, 2012, 42, 1175.
27 Tang C X. Nvestigation of influencing factors and its mechanisms on the carbonation curing process of C3S and β-C2S. Master's Thesis, Hunan University, China, 2021 (in Chinese).
唐陈希. C3S与β-C2S碳化养护的影响因素及机理研究. 硕士学位论文, 湖南大学,2021.
28 Chang J, Zhang Y, Shang X, et al. Construction and Building Materials, 2017, 133, 314.
29 Williams D A, Saak A W, Jennings H M. Cement and Concrete Research, 1999, 29 (9), 1491.
30 Sugamata T, Hibino M, Ouchi M, et al. Transactions of the Japan Concrete Institute, 1999, 21(2), 91.
31 Chang P K, Peng Y N. Cement and Concrete Research, 2001, 31, 87.
32 Pipilikaki P, Beazi-Katsioti M. Construction and Building Materials, 2009, 23, 1966.
33 Zhang C, Kong X, Lu Z, et al. Cement and Concrete Composites, 2019, 95, 154.
[1] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[2] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[3] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[4] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[5] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[8] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[9] 汪晖, 王轲炜, 梁昭. NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响[J]. 材料导报, 2023, 37(23): 22070005-5.
[10] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[11] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[12] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[13] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[14] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[15] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed