Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050050-7    https://doi.org/10.11896/cldb.22050050
  无机非金属及其复合材料 |
基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究
黄帅1, 张文芹2, 刘志超1,3,*, 王发洲3
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学硅酸盐材料工程研究中心,武汉 430070
3 硅酸盐建筑材料国家重点实验室(武汉理工大学),武汉 430070
Preparation and Properties of CO2 Driven Magnesium Slag-based 3D Printing Materials
HUANG Shuai1, ZHANG Wenqin2, LIU Zhichao1,3,*, WANG Fazhou3
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 Research Center of Silicate Materials Engineering, Wuhan University of Technology, Wuhan 430070, China
3 State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
下载:  全 文 ( PDF ) ( 15038KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁渣是一种含有大量硅酸二钙的工业固体废弃物,水化活性较差,但具有优异的碳化活性。提出一种镁渣基3D打印材料的制备方法,该方法以高碳化活性的镁渣为主要胶凝组分,加入硅灰、水、减水剂等成分制备流变可调的可打印浆体,在打印完成后通过预干燥处理与CO2加速养护,在短时间内即可获得具有优异力学强度的3D打印制品。研究了预干燥处理和CO2养护制度对打印试块的力学性能与微观结构的影响机理。结果表明:对打印试块进行适当的预干燥处理后再碳化有利于提升其力学强度,将打印试块预干燥至0.05水固比,在0.3 MPa的CO2分压下养护3 h后,其抗压强度达到48.8 MPa。微观结构致密化和方解石型CaCO3的形成是打印试块在CO2养护后快速获得强度的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄帅
张文芹
刘志超
王发洲
关键词:  镁渣  3D打印  碳化  抗压强度  流变性能    
Abstract: Magnesium slag is an industrial solid waste containing a large amount of dicalcium silicate with poor hydration activity and good carbonation activity. A preparation method of magnesium slag-based 3D printing material is proposed. The method uses magnesium slag with high carbonation activity as the main cementitious component, and silica fume, water and superplasticizer are added to prepare printable paste with adjustable rheology. After printing, 3D printing samples with excellent mechanical strength can be obtained in a short time through pre-drying and CO2 curing. The influence of carbonation curing conditions on the mechanical properties and microstructure of printed samples was investigated. Results show that, a proper pre-drying is beneficial to the carbonation strength. After pre-drying to 0.05 water to solid ratio before carbonation curing, then CO2 curing for 3h at 0.3 MPa, the compressive strength of the printed sample reaches 48.8 MPa; the densification of microstructure and the formation of calcite are the main reasons for the rapid strength gain of printed sample after CO2 curing.
Key words:  magnesium slag    3D printing    carbonation    compressive strength    rheological property
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U2001227)
通讯作者:  *刘志超,武汉理工大学材料科学与工程学院教授、博士研究生导师。2006年武汉理工大学材料科学与工程专业本科毕业,2009年武汉理工大学建筑材料与工程专业硕士毕业,2014年美国密歇根大学安娜堡分校土木工程专业博士毕业,2017年武汉理工大学材料科学与工程学院工作至今。目前主要从事低碳胶凝材料、超高性能水泥基材料方面的研究工作。发表论文30余篇,包括Cement and Concrete Research、ACS Sustainable Chemistry & Engineering、《硅酸盐学报》等。liuzc9@whut.edu.cn   
作者简介:  黄帅,2020年7月在河南科技大学获得工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,研究方向为基于气体驱动的3D打印建筑材料的制备。
引用本文:    
黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
HUANG Shuai, ZHANG Wenqin, LIU Zhichao, WANG Fazhou. Preparation and Properties of CO2 Driven Magnesium Slag-based 3D Printing Materials. Materials Reports, 2023, 37(19): 22050050-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050050  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050050
1 Zhang W B, Zhang F S. China Environmental Science, 2021, 41(5), 2299 (in Chinese).
张婉冰, 张付申. 中国环境科学, 2021, 41(5), 2299.
2 Liang D, He R J, Fang D N. Advanced Ceramics, 2017, 38(4), 231 (in Chinese).
梁栋, 何汝杰, 方岱宁. 现代技术陶瓷, 2017, 38(4), 231.
3 Ji H C, Zhang X J, Pei W C, et al. Journal of Materials Engineering, 2018, 46(7), 19 (in Chinese).
纪宏超, 张雪静, 裴未迟, 等. 材料工程, 2018, 46(7), 19.
4 Li Y Y, Si Y H, Xiong X B, et al. Journal of the Chinese Ceramic Society, 2017, 45(6), 793 (in Chinese).
李亚运, 司云晖, 熊信柏, 等. 硅酸盐学报, 2017, 45(6), 793.
5 Mu Y D, Liu Z C, Wang F Z, et al. Construction and Building Materials, 2018, 177, 322.
6 Mu Y D, Liu Z C, Wang F Z. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7058.
7 Mu Y D, Xue G R, Zhao S X, et al. Journal of the Chinese Ceramic Society. 2017, 45(8), 1197 (in Chinese).
穆元冬, 雪高瑞, 赵思雪, 等. 硅酸盐学报, 2017, 45(8), 1197.
8 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(19), 6673.
9 Li Y L, Liang P X, Fan Y, et al. Environmental Chemistry, 2015, 34(11), 2077 (in Chinese).
李咏玲, 梁鹏翔, 范远, 等. 环境化学, 2015, 34(11), 2077.
10 Yang W. Research & Application of Building Materials, 2011(9), 11 (in Chinese).
杨伟. 建材技术与应用, 2011(9), 11.
11 Duan L P, Kou B D, Ji K D, et al. Thermal Power Generation, 2016, 45(1), 82 (in Chinese).
段丽萍, 寇斌达, 姬克丹, 等. 热力发电, 2016, 45(1), 82.
12 Xiao L G, Luo F, Wang S Y, et al. New Building Materials, 2011(7), 21 (in Chinese).
肖力光, 雒锋, 王思宇, 等. 新型建筑材料, 2011(7), 21.
13 Mo L W, Hao Y Y, Liu Y P, et al. Cement and Concrete Research, 2019, 121, 81.
14 刘志超, 张志鹏, 王发洲, 等. 中国专利, CN113816668AP, 2021.
15 Moeini M A, Hosseinpoor M, Yahia A. Construction and Building Materials, 2020, 257, 119551.
16 Paul S C, Tay Y W D, Panda B, at al. Archives of Civil and Mechanical Engineering, 2018, 18(1), 311.
17 Jiao D W, Shi C J, Yuan Q, et al. Cement and Concrete Composites, 2017, 83, 146.
18 Kovler K, Roussel N. Cement and Concrete Research, 2011, 41(7), 775.
19 Ma K L, Long G C, Xie Y J, et al. Journal of the Chinese Ceramic Society, 2013, 41(5), 582 (in Chinese).
马昆林, 龙广成, 谢友均, 等. 硅酸盐学报, 2013, 41(5), 582.
20 Zhan B J, Xuan D X, Poon C S, et al. Cement and Concrete Composites, 2016, 71, 122.
21 Steinour H H. Journal American Concrete Institute, 1959, 30, 905.
22 Chen M X, Li L B, Zheng Y, et al. Construction and Building Materials, 2018, 189, 601.
23 Ou Z H, Liu G, Huang C H, et al. Materials Reports, 2016, 30(14), 135 (in Chinese).
欧志华, 刘广, 黄春华, 等. 材料导报, 2016, 30(14), 135.
24 Wang Y L, Shan J H, Zhou M K, et al. Housing Materials & Application, 2005(4), 36 (in Chinese).
王雨利, 单俊鸿, 周明凯, 等. 房材与应用, 2005(4), 36.
25 Ma B G, Peng Y, Tan H B, et al. Construction and Building Materials, 2018, 160, 341.
26 Wang P P, Zhao G R, Zhang G F. Journal of the Chinese Ceramic Society, 2017, 45(8), 1190 (in Chinese).
王培铭, 赵国荣, 张国防. 硅酸盐学报, 2017, 45(8), 1190.
27 Mu Y D. Carbonation-induced hardening mechanism of calcium silicate minerals and the performance-enhancing strategies of the carbonated materials. Ph. D. Thesis, Wuhan University of Technology, China, 2019 (in Chinese).
穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究. 博士学位论文, 武汉理工大学, 2019.
28 Liu Z C, Zeng H M, Wang F Z. Construction and Building Materials, 2021, 291, 123317.
29 Zhang Y L, Zhao Q L, Liu C Q, et al. Construction and Building Mate-rials, 2016, 102, 648.
30 Ou Z H, Ma B G, Jian S W, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(8), 2371 (in Chinese).
欧志华, 马保国, 蹇守卫, 等. 硅酸盐通报, 2016, 35(8), 2371.
31 Mo L W, Panesar D K. Cement and Concrete Composites, 2013, 43, 69.
32 Ou Z H, Ma B G, Jian S W. Journal of Building Materials, 2013, 16(1), 121 (in Chinese).
欧志华, 马保国, 蹇守卫. 建筑材料学报, 2013, 16(1), 121.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[3] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[4] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[5] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[6] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[7] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[8] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[9] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[10] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[11] 张弛, 李克非, 王俊杰. 水泥净浆非碳化区与脱钙碳化区的微观力学表征[J]. 材料导报, 2023, 37(2): 20110098-8.
[12] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[13] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[14] 董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
[15] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed