Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21100107-7    https://doi.org/10.11896/cldb.21100107
  无机非金属及其复合材料 |
碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究
龚鹏1,2, 程小伟1,2,*, 武治强3, 张高寅1,2, 张春梅1,2
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
3 中海油研究总院有限责任公司,北京 100028
Research on the Effect of Calcium Carbonate Whiskers on the Self-healing of Cement Stone Cracks Induced by CO2
GONG Peng1,2, CHENG Xiaowei1,2,*, WU Zhiqiang3, ZHANG Gaoyin1,2, ZHANG Chunmei1,2
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
3 CNOOC Research Institute Co., Ltd., Beijing 100028, China
下载:  全 文 ( PDF ) ( 27212KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO2的捕集、利用和封存(CCUS)井下固井水泥环的开裂损伤不可避免。本工作采用高浓度CO2与碳酸钙晶须反应诱导CaCO3沉积,以提高固井水泥石裂缝的自愈性能。利用抗压强度仪、X射线衍射仪(XRD)、热重分析仪(TG)、环境扫描电子显微镜(ESEM)和X 射线显微计算机断层扫描 (μ-CT)等测试仪器,研究碳酸钙晶须对固井水泥石自愈过程的影响。抗压强度结果显示,掺入与未掺入碳酸钙晶须水泥石在劈裂后,经过碳化自愈合反应28 d,其抗压强度均随着碳化时间的延长而提高,抗压强度的增长率分别为572%和528%。另外物相分析结果表明,随着碳化时间的延长,掺入碳酸钙晶须水泥石裂缝表面Ca(OH)2的质量损失(0.58%)明显小于未掺入碳酸钙晶须的水泥石的Ca(OH)2质量损失(2.68%)。ESEM结果表明,在水泥石裂缝表面,有碳化产物方解石与文石生成并沉积在裂缝处,使得水泥石裂缝自愈合。μ-CT测试结果表明,掺入碳酸钙晶须水泥石裂缝的自愈合率达到了55.24%,而未掺入碳酸钙晶须水泥石裂缝的自愈合率只有18.32%,这表明在CCUS井下,在固井水泥石中掺入碳酸钙晶须对水泥石裂缝的碳化自愈合过程有利。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚鹏
程小伟
武治强
张高寅
张春梅
关键词:  裂缝  碳化自愈合  碳酸钙晶须  CCUS    
Abstract: The cracking damage of the cement ring in CCUS downhole cementing is inevitable. In this work, high-concentration CO2 reacts with CaCO3 whiskers to induce CaCO3 deposition to improve the self-healing performance of cement-based material cracks. Compressive strength tes-ter, X-ray diffractometer (XRD), thermogravimetric analyzer (TG), environmental scanning electron microscope (ESEM) and X-ray micro-computed tomography (μ-CT) were used to study the influence of CaCO3 whiskers on the self-healing process of cement. The compressive strength results show that the compressive strength of cement mixed with CaCO3 whisker and without CaCO3 whisker after being carbonized for 28 days increases with the increase of carbonization time, and the growth rate of compressive strength are 572% and 528%, respectively. In addition, the XRD and TG results show that the mass loss and diffraction peaks of the sample Ca(OH)2 at the cracks of the cement gradually disappear with the increase of the carbonization time with the CaCO3 whisker cement. In addition, the phase analysis results show that with the prolongation of carbonation time, the mass loss of Ca(OH)2 on the crack surface of cement paste with calcium carbonate whiskers (0.58%) is significantly less than that of cement paste without calcium carbonate whiskers (2.68%). It shows that the addition of CaCO3 whiskers has a certain promotion effect on the carbonization of cement. The ESEM results show that on the surface of cement cracks, carbonized products of calcite and aragonite are formed and deposited on the cracks to make the cement cracks self-healing. The test results of μ-CT show that the self-healing rate of cement with CaCO3 whisker reached 55.24%, while the self-healing rate of cement without CaCO3 whisker was 18.32%. This indicates that mixing CaCO3 whiskers into cement is beneficial to the carbonization self-healing process of cement cracks under the CCUS downhole.
Key words:  cracks    carbonization self-healing    CaCO3 whiskers    CCUS
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TE256  
基金资助: 国家重点研发计划(2016YFB0303600);四川省区域创新合作项目(2021YFQ0045)
通讯作者:  * 程小伟,1998/9—2002/6于四川大学无机非金属材料研究方向获得学士学位;2003/9—2006/6于四川大学材料学研究方向获得硕士学位;2006/9—2009/6于西南石油大学油气田材料与应用方向获得博士学位。2016—2017,澳大利亚蒙纳士大学访问学者。现为西南石油大学新能源与材料学院教授、博士研究生导师,四川省学术和技术带头人后备,西南石油大学先进固井材料研究中心主任。目前主要从事胶凝复合材料与其在固井中应用、新型特种胶凝材料的研究、复杂工况下水泥石胶结与力学完整性研究以及有机/无机改性材料在固井工程应用等方面的研究工作。已发表论文80余篇,包括Corrosion Science、Composites Part B、Applied Surface Science、 Construction and Building Materials等期刊。chengxw@swpu.edu.cn   
作者简介:  龚鹏,2019年6月毕业于西南石油大学,获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在程小伟教授的指导下进行研究。目前主要研究固井水泥石的自愈合性能及其完整性。
引用本文:    
龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
GONG Peng, CHENG Xiaowei, WU Zhiqiang, ZHANG Gaoyin, ZHANG Chunmei. Research on the Effect of Calcium Carbonate Whiskers on the Self-healing of Cement Stone Cracks Induced by CO2. Materials Reports, 2023, 37(7): 21100107-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100107  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21100107
1 He G, Zhang H L, Xu Y, et al. Resources, Conservation and Recycling, 2017, 121, 3.
2 Stefanica J, Smutna J, Koci V, et al. 8th Trondheim Conference on CO2 Capture, Transport and Storage, 2016, 186, 215.
3 Qin J S, Li Y L, Wu D B, et al. Petroleum Geology and Recovery Efficiency, 2020, 27(1), 20 (in Chinese).
秦积舜, 李永亮, 吴德斌, 等. 油气地质与采收率, 2020, 27(1), 20.
4 Nor N H M, Selamat S N, Rashid M H A, et al. Journal of Physics:Conference Series, 2016, 725(1), 12010.
5 Zhao Z Q, Zhang H, Jiao C, et al. Modern Chemical Industry, 2021, 41(4), 5 (in Chinese).
赵志强, 张贺, 焦畅, 等. 现代化工, 2021, 41(4), 5.
6 Gao D L, Liu K. Oil and Gas Geology, 2019, 40(3), 602 (in Chinese).
高德利, 刘奎. 石油与天然气地质, 2019, 40(3), 602.
7 Yang C L, Chen J. Cement and Concrete Research, 2019, 123, 105797.
8 Duguid A. Energy Procedia, 2010, 1(1), 3181.
9 Duguid A, Radonji M, Scherer G W. International Journal of Greenhouse Gas Control, 2011, 5(6), 1413.
10 He J, Yang C H. Bulletin of the Chinese Ceramic Society, 2009, 28(6), 1225 (in Chinese).
何娟, 杨长辉. 硅酸盐通报, 2009, 28(6), 1225.
11 Yang S M, Yang S D, Wu Y N, et al. Oil Drilling & Production Technology, 2018, 40(2), 174 (in Chinese).
严思明, 严圣东, 吴亚楠, 等. 石油钻采工艺, 2018, 40(2), 174.
12 Cheng X W, Zhang M L, Yang Y S, et al. Oil Drilling & Production Technology, 2016, 38(1), 42 (in Chinese).
程小伟, 张明亮, 杨永胜, 等. 石油钻采工艺, 2016, 38(1), 42.
13 Ming X, Cao M, Lv X, et al. Construction & Building Materials, 2020, 244, 118333.
14 Pipich V, Schwahn D. Scientific Reports. 2020, 10(1), 1
15 Zhang Y, Wu L S, Yu Z H, et al. Functional Materials, 2022, 53(12), 12110 (in Chinese).
张毅, 吴立山, 余志辉, 等. 功能材料, 2022, 53(12), 12110.
16 Bertos M F, Simons S, Hills C D, et al. Journal of Hazardous Materials, 2004, 112(3), 193.
17 Morandeau A A M I, Theiry M, Dangla P. Cement and Concrete Research, 2014, 56, 153.
18 Wang F, Yu J X, Xiao C Q, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(1), 43 (in Chinese).
王芬, 余军霞, 肖春桥, 等. 硅酸盐通报, 2017, 36(1), 43.
19 Duguid A, Scherer G W. International Journal of Greenhouse Gas Control, 2010, 4(3), 546.
20 Mei K Y, Cheng X W, Zhang L A, et al. Construction & Building Materials, 2019, 227, 116651.
[1] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[2] 常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
[3] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[4] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[5] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[6] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[7] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[8] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[9] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[10] 马昆林, 王中志, 龙广成, 谢友均, 曾晓辉. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19): 19091-19098.
[11] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[12] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[13] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[14] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[15] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed