Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21070177-7    https://doi.org/10.11896/cldb.21070177
  无机非金属及其复合材料 |
复合矿物掺合料对砂浆自修复性能的影响
常洪雷1, 李晨聪1, 王晓龙1, 王剑宏1, 王云飞2, 曲明月2, 刘健,*1
1 山东大学齐鲁交通学院,济南 250002
2 山东大学土建与水利学院,济南 250061
Effect of Composite Mineral Admixtures on Self-healing Properties of Mortar
CHANG Honglei1, LI Chencong1, WANG Xiaolong1, WANG Jianhong1, WANG Yunfei2, QU Mingyue2, LIU Jian1,*
1 School of Qilu Transportation, Shandong University, Jinan 250002, China
2 School of Civil Engineering, Shandong University, Jinan 250061, China
下载:  全 文 ( PDF ) ( 4748KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了增强水泥基材料的自修复能力,通过在砂浆中复掺三种不同类型的矿物掺合料探究其共同作用的效果。通过对比裂缝宽度、透水率以及抗压强度恢复情况评估试件的自修复效果,并利用扫描电镜-能谱分析(SEM-EDS)研究裂缝处自修复物质的物相组成及微观形貌。掺加复合矿物掺合料可有效提升砂浆的自修复能力,具体表现为裂缝宽度减小、透水性降低和抗压强度显著恢复。其中,掺料组合膨胀剂+硅灰+生石灰和膨胀剂+生石灰+Na2CO3的修复效果最好,裂缝在14 d内可以实现完全愈合,透水率分别降低92.7%和87.4%,在养护28 d后抗压强度分别恢复79.1%和80.1%,且浸水环境更有利于提高砂浆的自修复效果。而掺料组合膨胀剂+硅灰+Na2CO3和膨胀剂+偏高岭土+Na2CO3的修复效果较差,不利于砂浆裂缝的修复和抗压强度的恢复。此外,微观分析结果显示,裂缝中的修复物质除含有水化生成的C-S-H和C-A-H外,碳化生成的碳酸钙也是主要的修复物质之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常洪雷
李晨聪
王晓龙
王剑宏
王云飞
曲明月
刘健
关键词:  砂浆  自修复  矿物掺和料  裂缝  修复程度    
Abstract: In order to enhance the self-healing ability of cement-based materials, three different types of mineral admixtures were mixed into mortar to explore the effect of their combined effects. The self-repairing effect of the specimens was evaluated by comparing the width of the cracks, the water permeability and the recovery of compressive strength. The phase composition and microstructure of the self-repairing materials at the cracks were studied by scanning electron microscopy and energy spectrum analysis (SEM-EDS). The addition of composite mineral admixtures can effectively improve the self-healing ability of mortar, which is manifested in the reduction of crack width, reduction of water permeability and remarkable recovery of compressive strength. Among them, the combined admixtures of expansive agent+silica fume+quicklime and expansive agent+quicklime+NaCO3 have the best effect. The crack can be completely healed within 14 d, with the water permeability decreasing by 92.7% and 87.4% respectively, while the compressive strength recovers by 79.1% and 80.1% respectively after curing for 28 d, and the immersion environment is more conducive to improving the self-repair effect. However, expander+silica fume+NaCO3 and expander+metakaolin+NaCO3 have poor repair effect, which is not conducive to the repair of cracks and the recovery of compressive strength. In addition, the micro-analysis results show that the repair materials in the cracks contain not only C-S-H and C-A-H generated by hydration but also calcium carbonate generated by carbonization.
Key words:  mortar    self-healing    mineral admixture    crack    repair effect
发布日期:  2023-02-08
ZTFLH:  TU528  
基金资助: 山东省自然科学基金(ZR2019QEE017);国家自然科学基金(51908327)
通讯作者:  *刘健,1996年6月获山东工业大学工学学士学位,2002年6月获山东大学工学硕士学位,2005年8月获天津大学工学博士学位。现为山东大学教授、博士研究生导师。主要从事交通基础设施智能检测,以及岩土结构计算分析、安全评估与监控等方面的研究。主持国家及省部级项目6项、重大工程委托项目6项。发表学术论文30余篇,其中SCI及EI收录20余篇。以第一完成人授权专利12项。   
作者简介:  常洪雷,2011年6月获青岛理工大学工学学士学位,2013年7月获青岛理工大学工学硕士学位,2018年3月获东南大学工程博士学位。现为山东大学副教授、博士研究生导师。主要从事高性能水泥基材料制备、耐久性及劣化机理研究,以及水泥基自修复基材料研制及颗粒分布模拟研究。主持国家级及省部级项目5项。发表学术论文近40篇,其中以第一作者或通讯作者被SCI/EI收录27篇。授权专利5项。
引用本文:    
常洪雷, 李晨聪, 王晓龙, 王剑宏, 王云飞, 曲明月, 刘健. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 21070177-7.
CHANG Honglei, LI Chencong, WANG Xiaolong, WANG Jianhong, WANG Yunfei, QU Mingyue, LIU Jian. Effect of Composite Mineral Admixtures on Self-healing Properties of Mortar. Materials Reports, 2023, 37(2): 21070177-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070177  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21070177
1 Zhang S C, Li S P, Wang S P. Materials Reports, 2020, 34(S2), 1201(in Chinese).
赵尚传, 李小鹏, 王少鹏. 材料导报, 2020, 34(S2), 1201.
2 Yi S T, Hyun T Y, Kim J K. Construction and Building Materials, 2011, 25(5), 2576.
3 Dry C. Composite Structures, 1996, 35(3), 263.
4 Alghamri R, Kanellopoulos A, Litina C, et al. Construction and Building Materials, 2018, 186, 247.
5 Lv L, Schlangen E, Yang Z, et al. Materials, 2016, 9(12), 1025.
6 Gao L X, Sun G W. Journal of the Chinese Ceramic Society, 2013, 41(5), 627(in Chinese).
高礼雄, 孙国文. 硅酸盐学报, 2013, 41(5), 627.
7 Qureshi T, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2018, 192, 768.
8 Wang X, Fang C, Li D, et al. Cement & Concrete Composites, 2018, 92, 216.
9 Jaroenratanapirom D, Sahamitmongkol R. Journal of Metals, Materials and Minerals, 2011, 21, 9.
10 Rashad A M. Construction and Building Materials, 2013, 41, 303.
11 Coppola L, Coffetti D, Crotti E, et al. Applied Sciences-Basel, 2020, 10(1), 363.
12 Ars A, Ajn B, Mln A. Cement and Concrete Composites, 2019, 103, 49.
13 Rajasegar M, Kumaar C M. Materials Today-Proceedings, 2021, 45, 5944.
14 Myong L K, Kim H. Journal of the Korean Recycled Construction Resources Institute, 2020, 8(1), 134.
15 Sisomphon K, Copuroglu O, Koenders E A B. Cement and Concrete Composites, 2012, 34(4), 566.
16 Li V C, Yang E H. Self healing materials. Springer, Dordrecht, 2007, pp.161.
17 Zhao M, Zhang M T, Peng J H, et al. Materials Reports, 2021, 35(12), 12099(in Chinese).
赵敏, 张明涛, 彭家惠, 等. 材料导报, 2021, 35(12), 12099.
18 Shui Z H, Wei X S, Wang D M. Modern concrete science and technology, Science Press, Beijing, 2013 (in Chinese).
水中和, 魏小胜, 王栋民. 现代混凝土科学技术, 科学出版社, 2013.
[1] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[2] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[3] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[4] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[5] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[6] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[7] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[8] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[9] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[10] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[11] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[12] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[13] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[14] 田青, 屈孟娇, 祁帅, 姚田帅, 张苗, 许鸽龙, 邓德华. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 21040170-5.
[15] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed