Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20080099-8    https://doi.org/10.11896/cldb.20080099
  无机非金属及其复合材料 |
建筑再生骨料强化方法研究进展
冯春花1, 黄益宏1, 崔卜文1, 朱建平1, 李东旭2, 郭晖1,*
1 河南理工大学材料科学与工程学院,河南 焦作 454000
2 南京工业大学材料科学与工程学院,南京 210009
Research Progress on Treatment Methods of Building Recycled Concrete Aggregates
FENG Chunhua1, HUANG Yihong1, CUI Buwen1, ZHU Jianping1, LI Dongxu2, GUO Hui1,*
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
下载:  全 文 ( PDF ) ( 7805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国城市化进程的加速,大量的危房、旧房进行拆除重建,产生了大量废旧混凝土等建筑垃圾。当前建筑垃圾的排放不仅造成了大量土地资源的浪费,还对环境造成了二次污染。另一方面,混凝土行业对砂石等骨料的需求日益增加,天然砂石的消耗及开采对生态环境的影响也是一个亟待解决的问题。因此,如何使建筑垃圾作为再生骨料利用成为当前关注的热点问题之一。
建筑固废破碎后直接作为再生骨料使用,常存在孔隙率大、吸水率高、强度低等缺点,导致其所制备的再生混凝土强度较低、耐久性较差。因此,再生骨料在混凝土中的有效利用受到了限制。为此,研究者们对再生骨料改性开展了系统性的研究,以期实现资源的再利用。
再生骨料的强化手段可分为去除黏附砂浆和强化黏附砂浆两类方法,去除黏附砂浆强化手段主要包括酸处理强化、机械研磨处理强化、热处理强化、热研磨处理强化、物理自净强化等方法,相比于强化黏附砂浆方法,去除黏附砂浆存在能耗大、强化不全面等缺陷。强化黏附砂浆主要包括微生物矿化强化、碳化处理强化、矿物掺合料改性强化和聚合物浸渍强化等方法,微生物矿化强化再生骨料效果最为显著,该方法主要是利用微生物矿化现象产生碳酸钙沉淀对孔隙进行填充,具有无污染和能耗低的特点,但该方法强化因素不易控制;矿物掺合料改性强化再生骨料是利用矿物掺合料与再生骨料表面氢氧化钙发生二次反应对骨料表面孔隙进行填充,加上纳米级颗粒的填充作用完成强化,性能提升明显,但在工程应用上常因条件控制不佳而影响强化稳定性;总之,各种强化方法各有利弊,单一的强化手段效果往往不佳。因此,应对两种或两种以上的强化方法进行复合,扬长补短,以达到较理想的强化效果。
本文综述了再生骨料的发展趋势、骨料回收工艺、再生骨料性能缺陷以及再生骨料强化方法,总结分析了相关研究中存在的问题,并展望了其发展前景,以期为建筑垃圾的处理及作为再生骨料的利用提供一定的理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯春花
黄益宏
崔卜文
朱建平
李东旭
郭晖
关键词:  建筑垃圾  再生骨料  黏附砂浆  强化方法    
Abstract: With the acceleration of urbanization in China, a large number of dilapidated and old houses have been demolished and rebuilt, generating considerable amount of construction and demolition (C&D) waste such aswaste concrete. At present, the production of C&D waste not only occupies large quantities of land resources, but also causes secondary pollution to the environment. On the other hand, the consumption and exploitation of natural aggregate on ecological environment is also an urgent problem to be solved due to the increasing demand for aggregates such as sand and gravel in concrete industry. Therefore, how to recycle the C&D waste as aggregate has become one of the hot issues.
Construction waste could directly be used as recycled concrete aggregate (RCA) after crushing. However, due to its disadvantages of large porosity, high water absorption and low strength, the use of RCA as aggregate tends to make the recycled aggregate concrete (RAC) product inferior in strength and durability, which limits the effective utilization of RCA. Therefore, many researches have been carried out on the modification of RCA in order to facilitate its reuse.
The technical routes to the enhancement of RCA can be classified into removing attached mortar and strengthening attached mortar. The methods of removing attached mortar mainly includes acid treatment, mechanical grinding treatment, thermal treatment, heat grinding treatment, autogenous cleaning treatment, etc. Compared with the route of strengthening attached mortar, the removal of attached mortar has defects such as large energy consumption and incomplete strengthening. The strengthening of attached mortar can be realized by means of microbial mineralization treatment, carbonation treatment, mineral admixtures treatment, polymer emulsion treatment, etc. The process of microbial mineralization can fill the pores by produce calcium carbonate precipitate. It displays the best strengthening effect for RCA and features no pollution and low energy consumption, but the control of the strengthening factors is difficult nevertheless. The action of mineral admixtures treatment relies on the secondary reaction between mineral admixture and calcium hydroxide on the surface of RCA, as well as the filling effect of nanometer particles, resulting in obvious performance improvement of RCA. However, its strengthening stability is often reduced owing to the poor condition control in engineering applications. In a word, each strengthening method has certain advantages and disadvantages, and thus the single use of any individual method has nearly undoubted limitation in efficacy, which the combination of two or more enhancement methods can help to overcome.
This review mainly summarizes the development trend, recovery technology, performance defects and enhancement methods of RCA, and also proposes some problems deserving attention and our preliminary understanding about the future directions. The paper is expected to provide certain theoretical support for relevant engineering and technological research.
Key words:  construction and demolition waste    recycled concrete aggregate    attach mortar    enhancement method
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TU528.041  
基金资助: 河南省科技攻关项目(212102310566);国家自然科学基金(51502080; 51872137)
通讯作者:  * guohui821@hpu.edu.cn   
作者简介:  冯春花,河南理工大学材料科学与工程学院副教授。2004年6月毕业于河北理工大学,获工学学士学位;2012年6月毕业于南京工业大学,硕博连读,获工学博士学位。同年加入河南理工大学工作至今,主要从事水泥水化机理及固废利用方面的研究。在国内外重要期刊发表文章20余篇。
郭晖,河南理工大学材料科学与工程学院讲师。2005年6月毕业于河南理工大学,材料学,获工学学士学位;2008年1月毕业于河南理工大学,获工学硕士学位;2020年6月毕业于河南理工大学,获工学博士学位。主要从事水泥水化机理及固废利用方面的研究。在国内外重要期刊发表论文10余篇。
引用本文:    
冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
FENG Chunhua, HUANG Yihong, CUI Buwen, ZHU Jianping, LI Dongxu, GUO Hui. Research Progress on Treatment Methods of Building Recycled Concrete Aggregates. Materials Reports, 2022, 36(21): 20080099-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080099  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20080099
1 Staunton J, Williams C D, Morrison L, et al. Land Use Policy, 2015, 49, 43.
2 Yang H, Xia J Q, Thompson J R, et al. Waste Management, 2017, 63, 393.
3 Shahidan S, Azmi M A M, Kupusamy K, et al. Procedia Engineering, 2017, 174, 1028.
4 Buck A D. Journal American Concrete Institute, 1977, 74(5), 212.
5 Nixon P J. Matériaux et Construction, 1978, 11(5), 371.
6 Tam V W Y, Soomro M, Evangelista A C J. Construction and Building Materials, 2018, 172, 272.
7 Thomas C,de Brito J, Cimentada A, et al. Journal of Cleaner Production, 2020, 245, 118843.
8 Gruebl P. In: Vortraege auf Dem Deutschen Betontag. Berlin, 1999, pp. 610.
9 Li J R, He G H, Zhong X Z. Construction Economy, 2017, 38(5), 87(in Chinese).
李景茹, 赫改红, 钟喜增.建筑经济, 2017, 38(5), 87.
10 da Rocha C G, Sattler M A. Resources, Conservation and Recycling, 2009, 54(2), 104.
11 Ambrós W M, Cazacliu B G, Sampaio C H. Powder Technology, 2016, 301, 369.
12 Xu G L, Shen W G, Zhang B L, et al. Cement and Concrete Composites, 2018, 93, 19.
13 Khoury E, Cazacliu B, Cothenet A, et al. Construction and Building Materials, 2020, 243, 117991.
14 Mistri A, Bhattacharyya S K, Dhami N, et al. Construction and Building Materials, 2020, 233, 117894.
15 Shi C J, Li Y K, Zhang J K, et al. Journal of Cleaner Production, 2016, 112(1), 466.
16 Behera M, Bhattacharyya S K, Minocha A K, et al. Construction and Building Materials, 2014, 68, 501.
17 Bravo M, de Brito J, Pontes J, et al. Construction and Building Materials, 2015, 77, 357.
18 Mefteh H, KebaÏli O, Oucief H, et al. Journal of Cleaner Production, 2013, 54, 282.
19 Lee G C, Choi H B. Construction and Building Materials, 2013, 40, 455.
20 Ulsen C, Kahn H, Hawlitschek G, et al. Waste Management, 2013, 33(3), 656.
21 Kim K H, Cho H C, Ahn J W. Minerals Engineering, 2012, 35, 43.
22 Montero J, Laserna S. Construction and Building Materials, 2017, 132, 343.
23 Kisku N, Joshi H, Ansari M, et al. Construction and Building Materials, 2017, 131, 721.
24 Guo H, Shi C J, Guan X M, et al. Cement and Concrete Composites, 2018, 89, 251.
25 Zidan R S, Ahmed T W, Mohammed Ali A A. SN Applied Sciences, 2019, 1, 927.
26 Zhu Y G, Wu C R, Wu Y K, et al. Concrete, 2018, 345(7), 88(in Chinese).
朱亚光, 吴春然, 吴延凯, 等.混凝土, 2018, 345(7), 88.
27 Wang L, Wang J L, Qian X, et al. Construction and Building Materials, 2017, 144, 432.
28 Santha Kumar G, Minocha A K. Journal of Material Cycles and Waste Management, 2018, 20, 469.
29 Katkhuda H, Shatarat N. Construction and Building Materials, 2017, 140, 328.
30 Ismail S, Ramli M. Construction and Building Materials, 2013, 44, 464.
31 Tam V W Y, Tam C M, Le K N. Resources, Conservation and Recycling, 2007, 50(1), 82.
32 Sung J H, Jeon C S, Lee S H, et al. Applied Sciences, 2019, 9, 1935.
33 Dimitriou G, Savva P, Petrou M F. Construction and Building Materials, 2018, 158, 228.
34 Montgomery D G. In: Sustainable Construction: Use of Recycled Concrete Aggregate. London, 1998, pp. 287.
35 de Juan M S, Gutiérrez P A. Construction and Building Materials, 2009, 23(2), 872.
36 Lippiatt N, Bourgeois F. Minerals Engineering, 2012, 31, 71.
37 Akbarnezhad A, Ong K C G, Zhang M H, et al. Construction and Buil-ding Materials, 2011, 25(8), 3469.
38 Menard Y, Bru K, Touze S, et al. Waste Management, 2013, 33(6), 1561.
39 Noguchi T, Park W J, Kitagaki R. Resources, Conservation and Recycling, 2015, 104, 405.
40 Sui Y W, Mueller A. Materials and Structures, 2012, 45, 1487.
41 Bru K, Touzé S, Bourgeois F, et al. International Journal of Mineral Processing, 2014, 126, 90.
42 Pepe M, Toledo Filho R D, Koenders E A B, et al. Construction and Building Materials, 2014, 69, 124.
43 Katz A. Journal of Materials in Civil Engineering, 2004, 16(6), 597.
44 Pedro D, de Brito J, Evangelista L. Materials and Structures, 2015, 48, 3965.
45 Boquet E, Boronat A, Ramos Cormenzana A. Nature, 1973, 246, 527.
46 Muynck W D, Belie N D, Verstraete W. Ecological engineering, 2010, 36(2), 118.
47 Lowenstam H A, Weiner S. On bio mineralization, Oxford University Press, USA, 1989.
48 Feng Z Y, Zhao Y X, Zeng W L, et al. Construction and Building Mate-rials, 2020, 230, 116949.
49 Li Z, Feng T, Zhou M J, et al. Concrete, 2017, 332(6), 5(in Chinese).
李珠, 冯涛, 周梦君, 等.混凝土, 2017, 332(6), 5.
50 Qian C X, Chen H C, Ren L F, et al. Frontiers in Microbiology, 2015, 6, 1225.
51 Qiu J S, Tng D Q S, Yang E H. Construction and Building Materials, 2014, 57, 144.
52 Khushnood R A, Qureshi Z A, Shaheen N, et al. Science of the Total Environment, 2020, 703, 135007.
53 Singh L P, Bisht V, Aswathy M S, et al. Construction and Building Materials, 2018, 181, 217.
54 Salman Rais M, Ahmad Khan R. Construction and Building Materials, 2021, 290, 123280.
55 Wang J Y, Vandevyvere B, Vanhessche S, et al. Journal of Cleaner Production, 2017, 156, 355.
56 Pu Y H, Li L, Wang Q Y, et al. Construction and Building Materials, 2021, 282, 122671.
57 Kou S C, Zhan B J, Poon C S. Cement and Concrete Composites, 2014, 45, 22.
58 Montemor M F, Cunha M P, Ferreira M G, et al. Cement and Concrete Composites, 2002, 24(1), 45.
59 Zhang J K, Shi C J, Li Y K, et al. Journal of Materials in Civil Enginee-ring, 2015, 27(11), 04015029.
60 Erlin B, Hime W. Concrete Construction, 2004, 49(8), 22.
61 Tang J Z, Wu J, Zou Z H, et al. Construction and Building Materials, 2018, 173, 707.
62 Lu B, Shi C J, Cao Z J, et al. Journal of Cleaner Production, 2019, 233, 421.
63 Tam V W Y, Wattage H, Le K N, et al. Construction and Building Materials, 2021, 270, 121490.
64 Li L, Poon C S, Xiao J Z, et al. Construction and Building Materials, 2017, 151, 52.
65 Xuan D X, Zhan B J, Poon C S. Cement and Concrete Composites, 2016, 65, 67.
66 Kou S C, Poon C S, Agrela F. Cement and Concrete Composites, 2011, 33(8), 788.
67 Çakir Ö. Construction and Building Materials, 2014, 68, 17.
68 Diamond S, Sahu S, Thaulow N. Cement and Concrete Research, 2004, 34(9), 1625.
69 Ji Y J, Cahyadi J H. Cement and Concrete Research, 2003, 33(10), 1543.
70 Zhang Z Q, Zhang B, Yan P Y. Construction and Building Materials, 2016, 105, 82.
71 Sobolev K, Ferrada Gutérrez M. American Ceramic Society Bulletin, 2005, 84(11), 16.
72 Balapour M, Joshaghani A, Althoey F. Construction and Building Mate-rials, 2018, 181, 27.
73 Shaikh F, Chavda V, Minhaj N, et al. Structural Concrete, 2017, 19(6), 1.
74 Yue Y C, Zhou Y W, Xing F, et al. Journal of Cleaner Production, 2020, 259, 120920.
75 Li W, Long C, Tam V W Y, et al. Construction and Building Materials, 2017, 142, 42.
76 Kim J H, Robertson R E. Advanced Cement Based Materials, 1998, 8(2), 66.
77 Kou S C, Poon C S. Cement and Concrete Composites, 2010, 32(8), 649.
78 Mansur A A P, Santos D B, Mansur H S. Cement and Concrete Research, 2007, 37(2), 270.
79 Spaeth V, Djerbi Tegguer A. International Journal of Sustainable Built Environment, 2013, 2(2), 143.
80 Quattrone M, Angulo S C, John V M. Resources, Conservation and Recycling, 2014, 90, 21.
[1] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[2] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[3] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[4] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[5] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[6] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[7] 刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
[8] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[9] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
[12] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 李彩云, 邢志国, 赵向伟, 王海斗, 李国禄, 石佳东. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(21): 21146-21154.
[15] 苏胜奇, 卢家成, 李嘉鹏, 刘晨辉, 李飞. 再生细骨料对蓄水层渗蓄性能的影响[J]. 材料导报, 2019, 33(Z2): 226-228.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed