Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21146-21154    https://doi.org/10.11896/cldb.19080107
  金属与金属基复合材料 |
强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议
李彩云1,2, 邢志国2, 赵向伟1, 王海斗2, 李国禄1,*, 石佳东1
1 河北工业大学材料科学与工程学院,天津 300130;
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status and Suggestions on Influence of Strengthening Methods on Bending Fatigue Strength of Heavy-duty Gear
LI Caiyun1,2, XING Zhiguo2, ZHAO Xiangwei1, WANG Haidou2, LI Guolu1,*, SHI Jiadong1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 8713KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 齿轮传动系统以传动比准确、稳定可靠、寿命长、效率高、结构紧凑等优点,被广泛应用于各种机械设备中,直接决定着整机产品的性能。重载齿轮的主要失效模式是磨损、点蚀、胶合与断裂,其中,断裂带来的灾难和损失最大,而断裂失效中又以弯曲疲劳断裂为主。近年来,有关重载齿轮的研究成果表明,表面强化技术已成为实现重载齿轮的高弯曲疲劳极限和长弯曲疲劳耐久寿命等高性能要求的核心技术。
然而,随着军用车辆、舰艇、航空航天器、高速铁路设施等技术的进步与发展,其动力传动机构进一步要求重载齿轮具有高质量、高效率、低变形、低成本的“二高二低”等特点,传统单一的表面强化技术已难以满足重载齿轮表面性能的要求。因此,研究具有“二高二低”的重载齿轮表面强化方法显得极为迫切。
近年来,一些新型的表面强化技术和表面复合强化技术正在替代传统的表面强化技术,如机械能表面强化技术、高能束表面强化技术及复合表面强化技术等已经在重载齿轮表面强化的处理上得到了一定的应用,并取得了良好的工程实用效果。通过复合多种表面强化技术,比如热喷涂与喷丸相结合的复合强化工艺等,可以实现齿轮综合性能的协同提升。
本文简要分析了重载齿轮服役工况与弯曲疲劳失效机理,总结了残余应力、粗糙度、渗层在重载齿轮服役过程中的重要作用。综述了不同表面强化技术在重载齿轮中的研究和应用现状,其中微粒喷丸、激光喷丸、稀土催渗、脉冲磁场强化等表面强化新技术越来越受到国内外研究者的重视。文中阐述了这些强化技术的基本原理、技术特点和应用效果,最后就今后重载齿轮强化的发展提出了若干建议,以期为工业应用中重载齿轮的使用提供参考,提高其服役安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李彩云
邢志国
赵向伟
王海斗
李国禄
石佳东
关键词:  重载齿轮  弯曲疲劳强度  表面性能  齿轮强化方法    
Abstract: The gear transmission system has been widely used in various mechanical equipment because of its accurate transmission ratio, stability, reliability, long life, high efficiency, compact structure and other advantages, which directly determines the performance of the whole machine products. The main failure modes of heavy-duty gears are wear, pitting, gluing and fracture, in which the disaster and loss caused by fracture are the largest, and bending fatigue fracture accounts for the highest proportion of fracture failure. In recent years, the research results show that the surface strengthening technology has become the core technology to achieve high performance requirements such as high bending fatigue limit and long bending fatigue life of heavy-duty gears.
However, with the development of military vehicles, warships, aerospace vehicles, high-speed railway facilities and other technologies, their power transmission mechanism further requires that the heavy-duty gears have the characteristics of high quality, high efficiency, low deformation and low cost. The traditional single surface strengthening technology has been difficult to meet the requirements of the surface performance of heavy-duty gears. Therefore, it is very urgent to study the surface strengthening method of heavy-duty gear with the above characteristics.
In recent years, some new surface strengthening technologies and surface composite strengthening technologies are replacing the traditional surface strengthening technologies, such as mechanical energy surface strengthening technology, high energy beam surface strengthening technology and composite surface strengthening technology, which have been applied to the surface strengthening treatment of heavy-duty gears to a certain extent, and have achieved good engineering practical results.
The service conditions and failure mechanism of bending fatigue of heavy-duty gears are briefly analyzed. The important roles of residual stress, roughness and seepage layer in the service process of heavy-duty gears are summarized. The research and application status of different surface strengthening technologies in heavy-duty gears are reviewed in detail. And new surface strengthening technologies such as particle peening, laser peening, rare earth penetration and pulsed magnetic field strengthening have attracte more and more attention. Through the combination of va-rious surface strengthening technologies, such as thermal spraying and shot peening, the comprehensive performance of gears can be improved synergistically. Finally, some suggestions for the future development of heavy-duty gear strengthening are put forward in order to provide a refe-rence for the use of heavy-duty gears in industrial applications and improve their service safety.
Key words:  heavy-duty gear    bending fatigue strength    surface properties    gear strengthening method
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TG142  
基金资助: 国家自然科学基金 (51535011);973计划 (61328304)
作者简介:  李彩云,2017年6月毕业于重庆理工大学,获得工学学士学位。现为河北工业大学材料科学与工程学院硕士研究生,在李国禄教授的指导下进行研究。目前主要研究领域为表面工程:新型材料及加工技术。
李国禄,河北工业大学材料科学与工程学院教授,博士研究生导师。1988年毕业于西安交通大学获学士学位;1991年毕业于河北工业大学获硕士学位;1999年于清华大学获得工学博士学位,研究方向为摩擦磨损与表面工程;1991年入职河北工业大学工作,历任讲师、副教授、教授。2009—2011年,河北工业大学材料科学与工程博士后流动站与中钢集团邢台机械轧辊有限公司博士后工作站联合培养博士后。主要从事再制造领域相关的摩擦学及表面工程,铸造耐磨合金及成型工艺方面的研究。近年来作为负责人主持国家自然科学基金项目3项,河北省教育厅博士基金课题1项,河北省博士后科研课题1项,主持横向科研课题7项;作为课题主要参与人先后完成国家自然科学基金项目1项,科技部项目1项,横向科研项目多项。获得河北省科技进步二等奖1项,三等奖2项,先后发表各种学术论文百余篇,其中SCI收录40余篇,EI收录70余篇。获得国家发明专利20余项,主编或参与编写教材和著作等出版物5部。
引用本文:    
李彩云, 邢志国, 赵向伟, 王海斗, 李国禄, 石佳东. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(21): 21146-21154.
LI Caiyun, XING Zhiguo, ZHAO Xiangwei, WANG Haidou, LI Guolu, SHI Jiadong. Research Status and Suggestions on Influence of Strengthening Methods on Bending Fatigue Strength of Heavy-duty Gear. Materials Reports, 2020, 34(21): 21146-21154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080107  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21146
[1] Xiao Z, Zhou C, Li Z, et al.Tribology International, 2019, 131, 406.
[2] Dengo C, Meneghetti G, Dabalà M. International Journal of Fatigue, 2015, 80, 145.
[3] Gao Y K, Zhao Z Y.Heat Treatment of Metals, 2014, 39(4), 1(in Chinese).
高玉魁, 赵振业. 金属热处理, 2014, 39(4), 1.
[4] Gorokovsky V I, Bowman C, Gannon P E, et al.Wear, 2008, 265(5), 741.
[5] Stringer D B, Dykas B D, Laberge K E. et al. In:Conference Record of the 67th Annual Forum and Technology Display (Forum 67). Virginia, 2011, pp. 5506.
[6] Gao M L, Bai S Q, Wang H.Hot Working Technology, 2012, 41(20), 55(in Chinese).
高美兰, 白树全, 王红. 热加工工艺, 2012, 41(20), 55.
[7] Mallipeddi D, Norell M, Sosa M, et al. Tribology International, 2019, 131, 406.
[8] Doremus L, Cormier J, Villechaise P. et al. Materials Science and Engineering: A, 2015, 644, 234.
[9] Zhang D S. PTCA (Part A: physical testing), 2002, 38(6), 231(in Chinese).
张定铨.理化检验(物理分册), 2002, 38(6), 231.
[10] Savaria V, Bridier F, Bocher P. International Journal of Fatigue, 2016, 85, 70.
[11] Shaw B A, Aylott C, O'Hara P, et al.International Journal of Fatigue, 2003, 25(9-11), 1279.
[12] Liu H, Liu H, Bocher P, et al. International Journal of Mechanical Sciences, 2018, 141, 520.
[13] Ma W, Lu J.Journal of Mechanical Transmission, 2015, 39(10), 170(in Chinese).
马威, 陆军. 机械传动, 2015, 39(10), 170.
[14] Song S W, Kim J N, Seo H J, et al. Materials Science & Engineering A, 2018, 724, 469.
[15] Chen D H, Ren S Z, Yu H, et al.Heat Treatment, 2009, 24(4), 63(in Chinese).
陈德华, 任颂赞, 于晖, 等. 热处理, 2009, 24(4), 63.
[16] Guan J, Wang L, Zhang Z, et al.Tribology International, 2018,119, 165.
[17] Huang S, Zhuang G Q, Wang M Q, et al.Journal of Iron Steel Research, 2012, 24(4), 34(in Chinese).
黄帅, 张国强, 王毛球, 等. 钢铁研究学报, 2012, 24(4), 34.
[18] Ma L, Wang M Q, Shi J, et al. Materials Science and Engineering: A, 2008, 498(1), 258.
[19] Lv Y, Lei L Q, Sun L N. Materials Science & Engineering A, 2015, 629, 8.
[20] Mao K.Wear, 2007, 262 (11), 1281.
[21] Liu Y C, Pang S Q, Wang X B, et al.Acta Armamentarii, 2013, 34(6), 759(in Chinese).
刘彦臣, 庞思勤, 王西彬, 等. 兵工学报, 2013, 34(6), 759.
[22] Wang J J, Wen Z X, Zhang X H, et al.International Journal of Fatigue, 2019,125, 101.
[23] Novovic D, Dewes R C, Aspinwall D K, et al.International Journal of Machine Tools & Manufacture, 2004, 44(2), 125.
[24] Siebel E, Gaier M.The Engineers's Digest, 1957, 18, 109.
[25] Gao Y K, Li X B, Yang Q X, et al.Materials Letters, 2007, 61(2), 466.
[26] Nordin E, Alfredsson B.Experimental Techniques, 2017, 41(4), 4331.
[27] Li W, Liu B S. International Journal of Fatigue, 2017, 106, 103.
[28] Morikawa H, Nakae M, Fukushima T. In:Conference Record of the Proceedings of the JSME International Conference on Motion and Power Transmissions. North Carolina, 2017, pp. 5.
[29] Kulekci M K, Esme U.International Journal of Advanced Manufacturing Technology, 2014, 74(9), 1551.
[30] Zou J S, Xu F, Lu L. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2009, 23(2), 113(in Chinese).
邹家生, 许峰, 卢龙. 江苏科技大学学报(自然科学版), 2009, 23(2), 113.
[31] Zhang J, Li W, Wang H Q, et al.Wear, 2016, 368-369, 253.
[32] Peng C, Xiao Y Z, Wang Y Z, et al.Optics & Laser Technology, 2017, 94, 15.
[33] Liu G, Wang S C, Lou X F, et al.Scripta Materialia, 2001, 44(8), 1791.
[34] Mhaede M. Materials & Design, 2012, 41, 61.
[35] Yin C, Zhang P, Zhao J J.Journal of Academy of Armored Force Enginee-ring, 2016, 30(4), 88(in Chinese).
殷畅, 张平, 赵军军. 装甲兵工程学院学报, 2016, 30(4), 88.
[36] Cao X J, Pyoun Y S, Murakami R.Applied Surface Science, 2010, 256(21), 6297.
[37] Shao Q, Kang J J, Xing Z G, et al.Journal of Magnetism and Magnetic Materials, 2019, 476, 218.
[38] Sun Z H I, Guo M, Vleugels J, et al.Current Opinion in Solid State & Materials Science, 2012, 16(5), 254.
[39] Fahmy Y, Hare T, Tooke R, et al.Scripta Materialia, 1998, 38(9), 145.
[40] elik A, Yetim A F, Alsaran A, et al.Materials & Design, 2005, 26(8), 700.
[41] Joon C K, Chang Y S, Junhyuk H, et al.Journal of Alloys & Compounds, 2018, 764, 73.
[42] Lü B T, Qiao S R, Sun X Y.Scripta Materialia, 1999, 40(7), 767.
[43] Zhao Y C, Zhang Z L, Yan C G, et al.Materials for Mechanical Enginee-ring, 2005, 29(3), 50(in Chinese).
赵永成, 张兆亮, 阎长罡, 等. 机械工程材料, 2005, 29(3), 50.
[44] Bepari M M A. Comprehensive Materials Finishing, 2017, 2, 71.
[45] Pakhomova S A, Unchikova M V, Fakhurtdinov R S. Materials Science Forum, 2016, 870, 383.
[46] Xing Z, Xing Z G, Wang H D, et al.Materials Reports A:Review Papers, 2017, 31(6), 86(in Chinese).
邢壮, 邢志国, 王海斗, 等. 材料导报:综述篇, 2017, 31(6), 86.
[47] Tian Y Y, Qu J, Qin L, et al.Hot Working Technology, 2011, 40(24), 211(in Chinese).
田亚媛, 瞿皎, 秦亮, 等. 热加工工艺, 2011, 40(24), 211.
[48] Thompson R E, Matlock D K, Speer J G. SAE Technical Papers, DOI: 10.4271/2007-01-1007.
[49] Morais R F D, Reguly A, Almeida L H D. Journal of Materials Enginee-ring & Performance, 2006, 15(4), 494.
[50] Wang H J, Wang B, Wang Z D, et al. Journal of Materials Science and Technology, 2019,35(7), 1218.
[51] Ju D Y.Heat Treatment of Metals, 2012, 37(1), 14(in Chinese).
巨东英.金属热处理, 2012, 37(1), 14.
[52] Song H X, Sun Z W, Kong Z Y. Modern Manufacturing Engineering, 2014(2), 135(in Chinese).
宋洪侠, 孙伟志, 孔志营.现代制造工程, 2014(2), 135.
[53] Allen C, Li C X, Bell T, et al. Wear, 2003, 254(11), 1106.
[54] Sirin S Y, Sirin K, Kaluc E. Materials Characterization, 2008, 59(4), 351.
[55] Wang C G, Deng D W, Liu D, et al.Journal of Mechanical Engineering, 2010, 46(8), 56(in Chinese).
王春光, 邓德伟, 刘丹, 等. 机械工程学报, 2010, 46(8), 56.
[56] Morita T, Inoue K, Ding X T, et al. Materials Science and Engineering: A, 2016, 661, 105.
[57] Shen D J, Wang Y L, Nash P, et al. Materials Science & Engineering A, 2007, 458(1), 240.
[58] Yurko J, Zhang L, Allanore A, et al. In: Conference Record of EPD Congress. California, 2014, pp.1020.
[59] Cai X Y, Chen Q W, Yan Q.Hot Working Technology, 2018, 47(6), 233(in Chinese).
蔡小勇, 陈启武, 颜琦. 热加工工艺, 2018, 47(6), 233.
[60] Aliofkhazraei M, Mofidi S H H, Rouhaghdam A S, et al. Journal of Thermal Spray Technology, 2008, 17(3), 323.
[61] Watanabe Y. Transactions of Materials and Heat Treatment, DOI: CNKI:SUN:JSCL.0.2004-05-087.
[62] Han J H, Lu H B. Sci-Tech Information Development & Economy, 2009, 19(18), 212(in Chinese).
韩金华, 鲁华宾. 图书情报导刊, 2009, 19(18), 212.
[63] Da J C, Zhou X Y, Zhou T, et al. Surface Technology, 2015, 44(7), 68(in Chinese).
答建成, 周细应, 周涛, 等. 表面技术, 2015, 44(7), 68.
[64] Wang Y G, Ma X Y. Journal of Applied Optics, 2004, 25(5), 1(in Chinese).
王勇刚, 马骁宇. 应用光学, 2004, 25(5), 1.
[65] Wen Z Y, Feng S Q, Li B L, et al. Manufacturing Technology & Machine Tool, 2007(1), 118(in Chinese).
温宗胤, 冯树强, 李宝灵, 等. 制造技术与机床, 2007(1), 118.
[66] Ingelgem Y V, VandendaeL I, Broek D V D, et al. Electrochimica Acta, 2007, 52(27), 7796.
[67] Wang Y L, Hui Y L, Yao C C. Surface Technology, 2014, 43(5), 109(in Chinese).
王玉玲, 惠英龙, 姚翠翠. 表面技术, 2014, 43(5), 109.
[68] Alexander V.Surface and Coatings Technology, 2003, 168(2), 129.
[69] Choo S H, Lee S, GolkovskI M G. Materials Science & Engineering A, 2000, 293(1-2), 56.
[70] Wei D Q, Yi Y Z, Wang R. Advanced Materials Research, 2011, 228-229, 1118.
[71] Ji H, Wang B, Fu X. In: Conference Record of International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering. Malaysia, 2017, pp.120010.
[72] Rode J E. U.S. patent application, US 20150344985, 2015.
[73] Santos E C, Kida K, Honda T, et al. Materials Science, 2012, 47(5), 677.
[74] Fu X B, Wang B Y, Zhu X X, et al. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4), 1.
[75] Liu P, Yang Y M, Hui L U, et al. Power Electronics, 2018, 52(2), 63.
[1] 朱守东, 张继旺, 易科尖, 苏凯新, 李行, 张金鑫. 微粒子喷丸工艺对EA4T车轴钢表面性能和疲劳强度的影响[J]. 材料导报, 2020, 34(14): 14181-14186.
[2] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[3] 邢壮, 邢志国, 王海斗, 刘珂璟. 装甲车辆重载齿轮综合强化方法研究现状*[J]. 《材料导报》期刊社, 2017, 31(11): 86-94.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed