Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3051-3059    https://doi.org/10.11896/j.issn.1005-023X.2018.17.018
  金属与金属基复合材料 |
重载齿轮弯曲疲劳寿命测试方法研究现状
王志远1,2, 邢志国2, 王海斗2, 李国禄1, 刘珂璟2, 邢壮2
1 河北工业大学材料科学与工程学院,天津 300130;
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status of Test Method for Bending Fatigue Life of Heavy Duty Gear
WANG Zhiyuan1,2, XING Zhiguo2, WANG Haidou2, LI Guolu1, LIU Kejing2, XING Zhuang2
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 重载齿轮是大型机械装置(推土机、挖掘机、装甲车等)传动系统的核心部件,它的主要功能是按照规定的转速比传递运动和转矩。随着科学技术的发展和军事装备的更新换代,重载齿轮的研究除了在材料性能、齿形设计、承载能力等方面取得了新成就外,另一个突出的进步就是在齿轮性能测试技术方面获得了很多成果,使得一些过去难以定量研究的问题(如齿轮的疲劳强度、齿轮传动品质等)都有了比较实用的测量手段。而在重载齿轮疲劳性能研究中,相对于接触疲劳产生的齿面点蚀、胶合、磨损等微小破坏而引起齿轮传动效率降低,啮合不到位等现象,弯曲疲劳则会直接导致齿根产生裂纹甚至形成断齿现象,造成重大事故。因此,准确测试重载齿轮的弯曲疲劳寿命,分析弯曲疲劳性能,进而优化齿轮设计,提升齿轮性能,对监测因弯曲疲劳失效所引起设备故障以及避免服役过程中发生重大事故具有重要意义。
   重载齿轮弯曲疲劳寿命受多方面因素的影响,其中包括材料性能、加工尺寸、制备工艺以及测试手段等,因此对其弯曲疲劳寿命的定量测试一直是各国研究人员关注的热点话题。关于重载齿轮弯曲疲劳寿命的研究可以归纳为以下三方面:弯曲疲劳原理探究方面已发展到声发射信号检测、光学图像分形理论计算、计算机有限元数学模拟等多方面的实际应用;性能检测实验已有单齿/双齿脉冲加载、动态啮合式加载等多种试验方法;数据处理方面已发展出升降法、成组法、雨流法以及多种S-N曲线拟合的数据处理手段。这些分析方法以及测试手段的应用可以大大节省实验成本、提高分析效率、减少试验误差,进而提高重载齿轮弯曲疲劳寿命检测的准确性。
   本文从重载齿轮弯曲疲劳寿命的测试原理、试验方法以及测试数据处理三方面出发,根据国内外研究现状,对重载齿轮的弯曲疲劳性能进行机理性与实验性的探究,为测试重载齿轮的弯曲疲劳寿命提供有效的理论依据、具体的测试方法以及准确的数据处理手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志远
邢志国
王海斗
李国禄
刘珂璟
邢壮
关键词:  重载齿轮  弯曲疲劳寿命  弯曲疲劳性能  测试方法    
Abstract: Heavy-duty gears are the heart of the transmission system of a large mechanical system (bulldozers, excavators, armored vehicles, etc.), their main function is to transfer motion and torque according to the specified rotational speed ratio. With the development of science and technology and the increasingly advanced of military equipment, heavy-duty gears not only have made new achievements in materials performance, gear profile design and bearing capacity, but also gain outstanding improvement in testing technology of gear performance. Issues including the fatigue strength of gears, the quality of gear transmission that were different to study quantitatively in the past can already be measured by practical means. In the study of fatigue performance of heavy-duty gears, tooth gear pitting corrosion, gluing, abrasion and other minor damage caused by contact fatigue will deteriorate the gear transmission efficiency, lead to the slight dislocation of the meshing and so forth. Bending fatigue will directly induce to tooth root cracks and even the tooth break, which lead to serious accidents. Therefore, it is of great significance to accurately test the bending fatigue life of heavy-duty gears, analyze the flexural fatigue performance, optimize the gear design and improve the gear performance in order to monitor the equipment failure caused by the failure of bending fatigue and avoid major accidents during service.
   The bending fatigue life of heavy-duty gears is affected by many factors, including material properties, processing dimensions, preparation techniques and test methods, therefore the quantitative measurement of bending fatigue life has always been a hot topic among researchers worldwide. The research on the bending fatigue life of heavy-duty gears can be summarized into the following three aspects. Firstly, the theory of bending fatigue has been developed to the practical application of acoustic emission signal detection, optical image fractal theory calculation and computer finite element mathematical simulation. Secondly, the performance testing experiments including single tooth/bidentate pulse loading, dynamic meshing loading and other test methods have been developed. Thirdly, data processing methods like up-down method, group method, rain flow method and a variety of S-N curve fitting and so forth are emerged. The application of these analysis methods and test methods can greatly cut the experimental cost, raise the analysis efficiency and reduce the experimental error, so as to improve the accuracy of bending fatigue life testing of heavy-duty gears.
   According to the research status at home and abroad, the bending fatigue performance of heavy duty gears is explored mechanically and experimentally in view of the principle of bending fatigue test of heavy-duty gears, the testing methods and the bending fatigue data processing. The article is expected to provide the theoretical basis, specific test methods and data processing means for calculating the bending fatigue strength of heavy duty gear and predicting bending fatigue life.
Key words:  heavy-duty gear    bending fatigue life    bending fatigue performance    test method
                    发布日期:  2018-09-19
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51775554;51535011);国防973计划(61328304)
通讯作者:  王海斗: 男,1969年生,博士,研究员,主要从事表面工程与摩擦学研究 E-mail:wanghaidou@aliyun.com; 邢志国: 男,1979年生,博士,助理研究员,硕士研究生导师,主要从事表面工程与摩擦学研究 E-mail:xingzg2011@163.com   
作者简介:  王志远:男,1994年生,硕士研究生,主要从事齿轮疲劳性能研究 E-mail:reincarnational@163.com
引用本文:    
王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
WANG Zhiyuan, XING Zhiguo, WANG Haidou, LI Guolu, LIU Kejing, XING Zhuang. Research Status of Test Method for Bending Fatigue Life of Heavy Duty Gear. Materials Reports, 2018, 32(17): 3051-3059.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.018  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3051
1 Xing Z, Xing Z G, Wang H D, et al. Research status of comprehensive strengthening methods for heavy duty gear of armored vehicles[J].Materials Review A: Review Papers,2017,31(6):86(in Chinese).
邢壮,邢志国,王海斗,等.装甲车辆重载齿轮综合强化方法研究现状[J].材料导报:综述篇,2017,31(6):86.
2 Gao C X, Wang C, Ren X H. Research on mining machinery gear materials[J].Advanced Materials Research,2012,503-504:680.
3 Osman T, Velex P. A model for the simulation of the interactions between dynamic tooth loads and contact fatigue in spur gears[J].Tribology International,2012,46(1):84.
4 Fan Y Q. The analysis and experimental research of gear bending fatigue strength influence factors[D].Chongqing: Chongqing University,2014(in Chinese).
樊毅啬.齿轮弯曲疲劳强度影响因素分析及试验研究[D].重庆:重庆大学,2014.
5 Hu J J, Xu H B, Zu S H, et al. Realization and analysis of bending fatigue strength test for gears under random loading[J].Advanced Materials Research,2011,291-294:1297.
6 Daniewicz S, Collins J A. Conception and development of improved analytical prediction models for fatigue induced tooth breakage due to cyclic bending in spur gear teeth[J].Dissertation Abstracts International,2008,52:2640.
7 Kato M, Deng G, Inoue K, et al. Evaluation of the strength of carburized spur gear teeth based on fracture mechanics[J].JSME International Journal,1993,36(2):233.
8 Kramberger J. Computational model for analysis of bending fatigue in gears[C]//Conference on Computational Structures Technology. Naples,2002:171.
9 Yu B Q, Li W, Xue J H, et al. Prediction of bending fatigue life for gears based on dynamic load spectra[J].Journal of University of Science and Technology Beijing,2013,35(6):813(in Chinese).
俞必强,李威,薛建华,等.基于动载荷谱的齿轮弯曲疲劳寿命测试[J].北京科技大学学报,2013,35(6):813.
10 Shen H, Li Z, Qi L, et al. A method for gear fatigue life prediction considering the internal flow field of the gear pump[J].Mechanical Systems & Signal Processing,2016,99:921.
11 Fajdiga G, Sraml M. Fatigue crack initiation and propagation under cyclic contact loading[J].Engineering Fracture Mechanics,2009,76(9):1320.
12 Glodez B, Flasker J, Jelaska D, et al. A computational model for calculating the bending-load capacity of gears[J].Strojniski Vestnik,2015,48(5):257.
13 Co N E C, Burns J T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior[J].International Journal of Fatigue,2017,103:234.
14 Suresh, Subra. Fatigue of materials/2nd Ed[M].England:Cambridge University Press,1998.
15 Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials[J].International Journal of Fatigue,1998,20(1):9.
16 Liang J, Nie X, Masud M, et al. A study on the simulation method for fatigue damage behavior of reinforced concrete structures[J].Engineering Structures,2017,150:25.
17 Le X B, Hu Z, Fan Z. New fatigue cumulative damage probabilistic model of the mechanical parts[J].Chinese Journal of Mechanical Engineering,1994,7:183.
18 Qin C. Research of gear bending fatigue strength and gear fatigue crack propagation[D].Zhengzhou: Henan University of Technology, 2015(in Chinese).
秦超.齿轮弯曲疲劳强度及疲劳裂纹扩展研究[D].郑州:河南工业大学,2015.
19 Lee J, Cheon J, Cho S. The experimental investigation on the cause of planetary gear fracture and the validity of its improvement in FR automatic transmission[J].Korean Society of Automotive Engineers Spring Conference,2017,5:194.
20 Aliabadi M H, Rooke D P. Numerical fracture mechanics[M].London:Computational Mechanics Publications,1991.
21 Sharma R B, Parey A. Modelling of acoustic emission generated by crack propagation in spur gear[J].Engineering Fracture Mechanics,2017,182:215.
22 Liu Z Q, Chen L, Wang W M. Several questions about gear single tooth pulsating bending fatigue test[J].Journal of Mechanical Transmission,2017(3):151(in Chinese).
刘子强,陈亮,万文铭.关于齿轮单齿脉动弯曲疲劳试验中的几个问题[J].机械传动,2017(3):151.
23 Fernandes P J L. Tooth bending fatigue failures in gears[J].Engineering Failure Analysis,1996,3(3):219.
24 Gasparini G, Mariani U, Gorla C, et al. Bending fatigue tests of he-licopter case carburized gears[J].Gear Technology,2009,12:68.
25 张照智,杨顺成.齿根圆角对齿轮弯曲疲劳强度影响的试验研究[C]//全国齿轮材料,强度及热处理技术研讨会.烟台,1997.
26 Hu J J , Xu H B, Zu S H, et al. Numerical analysis of tooth-root stress for gear bending fatigue test[J].Journal of Chongqing University of Technology (Natural Science),2011(10):30(in Chinese).
胡建军,许洪斌,祖世华,等.齿轮弯曲疲劳实验齿根应力的数值解析[J].重庆理工大学学报(自然科学),2011(10):30.
27 Conrado E, Gorla C, Davoli P, et al. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J].Engineering Failure Analysis,2017,78:41.
28 He X H. The study of bending fatigue strength of 20CrMoH gear[D].Chongqing: Chongqing University,2011(in Chinese).
何晓华.20CrMoH齿轮弯曲疲劳强度研究[D].重庆:重庆大学,2011.
29 边新孝,王小群,谈嘉祯,等.30SiMn调质齿轮弯曲疲劳强度的试验研究[C]//全国零部件设计与制造会议.上海,2002.
30 Liu S F, Hu Y B, Zou J W, et al. Research on R-S-N fatigue curve test of different heat treated 17CrNiMo6 gear materials of gas turbine transmission system[J].Mechanical Engineer,2016(12):142(in Chinese).
刘韶峰,胡云波,邹俊伟,等.燃机传动系统17CrNiMo6齿轮材料不同热处理R-S-N疲劳曲线测试研究[J].机械工程师,2016(12):142.
31 Li M, Xie L, Ding L. Load sharing analysis and reliability prediction for planetary gear train of helicopter[J].Mechanism & Machine Theory,2017,115:97.
32 Savaria V, Bridier F, Bocher P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J].International Journal of Fatigue,2016,85:70.
33 Lv Y, Lei L, Sun L. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear[J].Materials Science & Engineering A,2016,658:77.
34 Mohan N A, Senthilvelan S. Preliminary bending fatigue perfor-mance evaluation of asymmetric composite gears[J].Mechanism & Machine Theory,2014,78(4):92.
35 Filiz I H, Eyercioglu O. Evaluation of gear tooth stresses by finite element method[J].Journal of Engineering for Industry,1995,117(2):232.
36 Crowther A, Zhang N, Liu D, et al. A finite element method for dynamic analysis of automatic transmission gear shifting[C]//Proc. of the, International Conference on Motion and Vibration Control. Korea,2017:514.
37 Deng S, Hua L, Han X H, et al. Finite element analysis of contact fatigue and bending fatigue of a theoretical assembling straight bevel gear pair[J].Journal of Central South University,2013,20(2):279.
38 Glodež S, Šraml M, Kramberger J. A computational model for determination of service life of gears[J].International Journal of Fatigue,2002,24(10):1013.
39 Jyothirmai S, Ramesh R, Swarnalatha T, et al. A finite element approach to bending, contact and fatigue stress distribution in helical gear systems[J].Procedia Materials Science,2014,6:907.
40 Silori P, Shaikh A, Kumar K C N, et al. Finite element analysis of traction gear using ANSYS[J].Materials Today Proceedings,2015,2(4-5):2236.
41 Alipiev O. Geometric design of involute spur gear drives with symmetric and asymmetric teeth using the realized potential method[J].Mechanism & Machine Theory,2011,46(1):10.
42 Kapelevich A. Geometry and design of involute spur gears with asymmetric teeth[J].Mechanism & Machine Theory,2000,35(1):117.
43 Ma W. Study on gear bending fatigue properties based on test and numerical simulation technology[D].Beijing:China Academy of Machinery Science & Technology,2016(in Chinese).
马威.基于试验与数值模拟技术的齿轮弯曲疲劳特性研究[D].北京:机械科学研究总院,2016.
44 Weibull W. Fatigue testing and analysis of results[M].North Atlantic: Pergamon Press,1961.
45 Hu J J, Xu H B, Zu S H, et al. Experimental study of gear bending fatigue strength under random load with Gaussian normal distribution[J].China Mechanical Engineering,2013,24(12):1572(in Chinese).
胡建军,许洪斌,祖世华,等.服从正态分布随机载荷作用下齿轮弯曲疲劳试验研究[J].中国机械工程,2013,24(12):1572.
46 Ren Z, Chen X. Research on fatigue life of steel wire ropes under impact loads based on double Pareto lognormal distribution[J].Advances in Mechanical Engineering, 2017, 9(8):1.
47 Chakrabarty J B, Chowdhury S. Compounded inverse Weibull distributions: Properties, inference and applications[J].Working Papers,2016,1:152.
48 El-Adll M E. Original article: Predicting future lifetime based on random number of three parameters Weibull distribution[M].Ne-therlands: Elsevier Science Publishers B.V.,2011.
49 Sun S X, Sun Z L, Li L Q, et al. Gear transmission reliability design based on Weibull distribution and ultimate status theory[J].Modular Machine Tool & Automatic Manufacturing Technique,2007,7:11.
50 Gao X W. A study of gear bending fatigue strength under random load in compliance with Weibull distribution[D].Chongqing: Chongqing University of Technology,2009(in Chinese).
高孝旺.随机载荷呈威布尔分布的齿轮弯曲疲劳强度的研究[D].重庆:重庆理工大学,2009.
51 Sun S, Li L, Sun Z, et al. The three parameters estimation of Weibull distribution in gear reliability design[J].Journal of Mechanical Transmission,2008,32(2):48.
52 Asi O. Fatigue failure of a helical gear in a gearbox[J].Engineering Failure Analysis,2006,13(7):1116.
53 Mathis R, Remond Y. Kinematic and dynamic simulation of epicyclical gear trains[J].Mechanism & Machine Theory,2009,44(2):412.
54 Khabou M T, Bouchaala N, Chaari F, et al. Study of a spur gear dynamic behavior in transient regime[J].Mechanical Systems & Signal Processing,2011,25(8):3089.
55 Ma R B, Dong L H, Wang H D, et al. Research status of rolling contact fatigue life of thermal sprayed coating based on statistics method[J].Materials Review A: Review Papers,2016,30(11):83(in Chinese).
马润波,董丽虹,王海斗,等.基于统计学方法的热喷涂层滚动接触疲劳寿命研究现状[J].材料导报:综述篇,2016,30(11):83.
56 Liu G, Wang D, Hu Z. Application of the rain-flow counting method in fatigue[C]//International Conference on Electronics, Network and Computer Engineering. Thailand,2016.
57 Marsh G, Wignall C, Thies P R, et al. Review and application of rainflow residue processing techniques for accurate fatigue damage estimation[J].International Journal of Fatigue,2016,82:757.
58 Yuan J M, Zhang Q M, Yan L. Comparison study on langlie method and up-and-down method for sensitivity test of explosive[J].Chinese Journal of Energetic Materials,2008.
59 Yang G M. Determination of gear bending fatigue limit based on up and down method[J].Journal of Mechanical Transmission,2015(8):176(in Chinese).
杨广明.升降法测定齿轮的弯曲疲劳极限[J].机械传动,2015(8):176.
60 Raymond L. Accelerated small specimen test method for measuring the fatigue strength in the failure analysis of fasteners[J].Astm Special Technical Publication,2000,1391:12.
61 Sun S H. The test study fatigue reliability of high-speed automotive chain[D].Changchun: Changchun University of Science and Technology,2009(in Chinese).
孙淑红.高速汽车链的疲劳可靠性试验研究[D].长春:长春理工大学,2009.
62 Ling J, Pan J. A maximum likelihood method for estimating P-S-N curves[J].International Journal of Fatigue,1997,19(5):415.
63 Zhao N, Li H. The estimation of gear’s fatigue life using the modified P-S-N curve[J].Modern Manufacturing Engineering,2007,27(5):105.
64 Zhang Y M, Wang T, Huang J. Fatigue reliability-based sensitivity design of planet gear for shearer rocker arm system[J].Journal of Northeastern University,2016,105:244.
65 Yang C S, Kou H B, Xi L U, et al. Determination of the P-S-N curve for bending fatigue of automobile transmission gear[J].Journal of University of Shanghai for Science & Technology,2006.
66 Li G B, Lv X. Reliability calculation of gear bending fatigue and development of interface program[J].Technology Innovation,2015(32):54(in Chinese).
李广博,吕旭.齿轮弯曲疲劳的可靠度计算以及界面化程序开发[J].科技创新与应用,2015(32):54.
67 Gong J X, Zhong W Q, Zhao G F. General calculation method of structural reliability index[J].Chinese Journal of Computational Mechanics 2003,20(1):12(in Chinese).
贡金鑫,仲伟秋,赵国藩.结构可靠指标的通用计算方法[J].计算力学学报,2003,20(1):12.
68 Hsu L H, Hsu K C, Wu K H, et al. GSD-13 construction of the R-S-N curves for surface durability of carburized gear material using non-linear parametric models(gear strength and durability)[C]//The Japan Society of Mechanical Engineers. Japan,2017:217.
[1] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[2] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[3] 邢壮, 邢志国, 王海斗, 刘珂璟. 装甲车辆重载齿轮综合强化方法研究现状*[J]. 《材料导报》期刊社, 2017, 31(11): 86-94.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed