Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 95-100    https://doi.org/10.11896/j.issn.1005-023X.2017.015.014
  材料综述 |
碱激发材料氯离子传输性能测试方法及影响因素研究进展*
史才军1, 张留洋1, 张健1, 李宁1, 欧志华2
1 湖南大学土木工程学院,长沙 410082;
2 湖南工业大学土木工程学院,株洲 412007;
Advances in Testing Methods and Influencing Factors of Chloride Ion Transport Properties of Alkali-activated Materials
SHI Caijun1, ZHANG Liuyang1, ZHANG Jian1, LI Ning1, OU Zhihua2
1 College of Civil Engineering, Hunan University, Changsha 410082;
2 College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007;
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料中氯离子的传输是一个非常复杂的过程。在介绍水泥基材料氯离子传输机理及常用试验方法的基础上,综述了碱激发材料氯离子传输性能测试方法及影响因素。碱激发材料氯离子传输性能受激发剂种类的影响,改变矿渣掺量、碱掺量和水玻璃模数能不同程度地改变体系的氯离子传输性能。快速氯离子渗透试验结果受孔溶液化学组成影响,碱激发材料孔溶液碱性高、化学组成更复杂,孔溶液影响更显著,所以该方法不适用于评价碱激发材料氯离子传输性能。自然扩散试验因时间长而不常用。非稳态电迁移试验是目前快速测试水泥基材料中氯离子传输性能最好的方法,但由于碱激发材料与普通水泥基材料的碱度不同,其变色边界氯离子浓度也会不同,将该方法用于评价碱激发材料时,还需进一步研究测试样品的准备和硝酸银变色边界氯离子浓度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史才军
张留洋
张健
李宁
欧志华
关键词:  碱激发材料  氯离子  传输性能  测试方法  影响因素    
Abstract: The transportation of chloride ions within cement-based materials is a complicated process. In this paper, the mecha-nism for transportation of chloride ions and the testing methods for Portland cement system are introduced firstly. On that basis, the factors influencing the chloride transportation of alkali-activated materials and the testing methods for chloride transportation properties of alkali-activated materials are reviewed. The type of activators, slag content, alkali dosage and modulus of water-glass is closely related to the chloride penetration resistance of alkali-activated materials. The high alkalinity and complex chemical composition of pore solution of alkali-activated materials hinders the application of rapid chloride penetration test, whose measurements are affected by composition and concentration in pore solution of testing samples. The natural diffusion test is a time-consumption method, which is not commonly used in practical. Unsteady electromigration test is widely applied to rapid determination of the chloride penetration resistance of Portland cement system. However, due to the different alkalinity of materials, the chloride concentration at color change boundary of Portland cement system varies from that of alkali-activated materials. Therefore, the preparation of test samples and the chloride concentration at color change boundary with silver nitrate colorimetric method in alkali-activated materials still need further study.
Key words:  alkali-activated material    chloride ion    transport property    testing method    influencing factor
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TQ172  
基金资助: *国家自然科学基金(51638008;51461135001)
作者简介:  史才军:男,1963年生,博士,教授,博士研究生导师,研究方向为土木工程材料耐久性能 E-mail:cshi@hnu.edu.cn
引用本文:    
史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
SHI Caijun, ZHANG Liuyang, ZHANG Jian, LI Ning, OU Zhihua. Advances in Testing Methods and Influencing Factors of Chloride Ion Transport Properties of Alkali-activated Materials. Materials Reports, 2017, 31(15): 95-100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.014  或          http://www.mater-rep.com/CN/Y2017/V31/I15/95
1 Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes[M]. CRC Press,2006.
2 Shi C, Jiménez A F, Palomo A. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cem Concr Res,2011,41(7):750.
3 Provis J L, Palomo A, Shi C. Advances in understanding alkali-activated materials[J]. Cem Concr Res,2015,78:110.
4 Fernández-Jiménez A, Palomo J G, Puertas F. Alkali-activated slag mortars: Mechanical strength behaviour[J]. Cem Concr Res,1999,29(8):1313.
5 Bernal S A, Gutiérrez R M D, Provis J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolinblends[J]. Constr Building Mater,2012,33(7):99.
6 Puertas F, MartíNez-RamíRez S, Alonso S, et al. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products[J]. Cem Concr Res,2000,30(10):1625.
7 Bernal S A, Gutiérrez R M D, Pedraza A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cem Concr Res,2011,41(1):1.
8 Pacheco-Torgal F,et al. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?[J]. Constr Building Mater,2012,30(5):400.
9 Guerrieri M, Sanjayan J, Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated tempe-ratures[J]. Mater Struct,2010,43(6):765.
10 Puertas F, Palacios M, Gil-Maroto A, et al. Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type[J]. Cem Concr Compos,2009,31(5):277.
11 Shi C J, Deng D H, et al. Pore structure and chloride ion transport mechanisms in concrete[J]. Key Eng Mater,2006,302-303(3):528.
12 Streicher P E, Alexander M G. A critical evaluation of chloride diffusion test methods for concrete[C] ∥Proceedings of the third CANMET/ACI international conference on concrete durability. Nice, France,1994.
13 Stanish K D, Hooton R D, Thomas M D A. Testing the chloride penetration resistance of concrete: A literature review[R]. FHWA contract DTFH61.Canada:University of Toronto,1997:19.
14 Shi Caijun, Yuan Qiang, Deng Dehua, et al. Test methods for the transport of chloride ion in concrete[J]. J Chinese Ceram Soc,2007,35(4):522(in Chinese).
史才军, 元强, 邓德华,等. 混凝土中氯离子迁移特征的表征[J]. 硅酸盐学报,2007,35(4):522.
15 ASTM C1202. Electrical indication of concrete′s ability to resist chloride ion penetration [S]. Washington D C, USA: American Society for Testing and Materials,2000.
16 NORDTEST NT BUILD 492. Chloride migration coefficient from non-steady-state migration experiments [S]. Finland: Nordtest,1999.
17 NORDTEST NT BUILD 443. Accelerated chloride penetration [S].Finland: Nordtest,1995.
18 Shi C. Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test(AASHTO T277and ASTM C1202) results[J]. Aci Mater J,1998, 95(4):389.
19 Shi C. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results[J]. Cem Concr Res,2004,34(3):537.
20 Shi C. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cem Concr Res,1996, 26(12):1789.
21 Lloyd R R, Provis J L, Deventer J S J V. Pore solution composition and alkali diffusion in inorganic polymer cement[J]. Cem Concr Res,2010,40(9):1386.
22 Liu Xiaojin, Shi Caijun, et al. Study of hydration and microstructure of alkali-activated slag cement and portland cement by impedance spectroscopy[J]. Mater Rev:Res,2015,29(10):130(in Chinese).
刘小金, 史才军, 等. 用交流阻抗研究碱激发矿渣水泥与硅酸盐水泥的水化和微观结构[J]. 材料导报:研究篇, 2015,29(10):130.
23 Tang L, Nilsson L O. Rapid determination of the chloride diffusivity in concrete by applying an electrical field[J]. Am J Geriatric Psychia-try,1992,10(1):24.
24 AEC LABORATORY. Concrete testing, hardened concrete. Chloride penetration, APM 302, 2nd ed [S]. Vedbek, Denmark: AEC Laboratory,1991.
25 Ravikumar D, Neithalath N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J]. Cem Concr Res,2013,47(5):31.
26 Ravikumar D, Neithalath N. An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes[J]. Cem Concr Compos,2013,44(44):58.
27 Tang L. Chloride transport in concrete—Measurement and prediction: Thèse[M]. Epfl,1996.
28 Otsuki N, Nagataki S, Nakashita K. Evaluation of the AgNO3, solution spray method for measurement of chloride penetration into hardened cementitious matrix materials[J]. Constr Building Mater,1992,7(4):195.
29 Yuan Q, Deng D, Shi C, et al. Application of silver nitrate colorimetric method to non-steady-state diffusion test[J]. J Central South University,2012,19(10):2983.
30 He F, Shi C, Yuan Q, et al. AgNO3 -based colorimetric methods for measurement of chloride penetration in concrete[J]. Constr Building Mater,2012,26(1):1.
31 Ismail I, Bernal S A, Provis J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Constr Building Mater,2013,48(11):1187.
32 Douglas E, Bilodeau A, Malhotra V M. Properties and durability of alkali-activated slag concrete[J]. Aci Mater J,1992,89(5):509.
33 Chen Qiao. Research on chloride ion permeability and reinforcement corrosion of alkali activated slag concrete[D]. Chongqing: Chongqing University,2008(in Chinese).
陈乔. 碱矿渣混凝土氯离子渗透及钢筋锈蚀性能研究[D]. 重庆:重庆大学,2008.
34 Chen Qiao, Cong Gang, Yang Changhui. The influences of mineral admixtures on chloride ion permeability in alkali activated slag concrete[J]. China Concr Cem Products,2008(3):11(in Chinese) .
陈乔, 丛钢, 杨长辉. 矿物掺合料对碱矿渣混凝土氯离子渗透性的影响[J]. 混凝土与水泥制品,2008(3):11.
35 Park J W, et al. Resistance of alkali-activated slag concrete to chloride-induced corrosion[J]. Adv Mater Sci Eng,2015,2015:1.
36 Mejia R, Delvasto S, Gutierrez C, et al. Chloride diffusion measured by a modified permeability test in normal and blended cements[J]. Adv Cem Res,2003,15(3):113.
37 ASTM C1543. Standard test method for determining the penetration of chloride ion into concrete by ponding[S]. Washington D C, USA: American Society for Testing and Materials,2010.
38 He F, Shi C, Yuan Q, et al. Calculation of chloride concentration at color change boundary of AgNO3, colorimetric measurement[J]. Cem Concr Res,2011,41(11):1095.
39 Ma Q, Nanukuttan S V, Basheer P A M, et al. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes[J]. Mater Struct,2016,49(9):1.
40 Zhu H, Zhang Z, Zhu Y, et al. Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars[J]. Constr Building Mater,2014,65(13):51.
41 Parˇízek L, Bílek V, Brˇezina M. Chloride resistance of alkali activated slag pastes with fly ash replacement[J].Mater Sci Forum,2016,851:98.
42 Yang T, Yao X, Zhang Z. Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF)[J]. Constr Building Mater,2014,69(11):109.
43 Liu Xiaojin. The study of hydration and microstructure of alkali-activated slag cements by impedance spectroscopy[D]. Changsha: Hunan University,2015(in Chinese).
刘小金. 用交流阻抗方法研究碱激发矿渣水泥浆体水化和微观结构[D]. 长沙:湖南大学,2015.
44 Wang S D, Scrivener K L, Pratt P L. Factors affecting the strength of alkali-activated slag[J]. Cem Concr Res, 1994, 24(6):1033.
45 Kim J C, Kim J K. Studies on the hydration of alkali activated slag [C]// Beijing International Symposium on Cement and Concrete.Beijing,1993.
46 Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali-slag cements[J]. Cem Concr Res,2002,32(8):1181.
47 Bernal S A, Provis J L, Rose V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolinblends[J]. Cem Concr Compos,2011,33(1):46.
48 Ravikumar D, et al. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH[J]. Cem Concr Compos,2012,34(7):809.
[1] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[2] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[3] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[4] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[5] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[6] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[7] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[8] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[9] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[10] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[11] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[12] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[13] 梅友静, 徐金霞, 蒋林华, 陈平, 谭启平. 焙烧Mg-Al水滑石水泥浆涂层对钢筋氯离子腐蚀的缓蚀性能[J]. 材料导报, 2018, 32(22): 3941-3947.
[14] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[15] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed