Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 95-100    https://doi.org/10.11896/j.issn.1005-023X.2017.015.014
  材料综述 |
碱激发材料氯离子传输性能测试方法及影响因素研究进展*
史才军1, 张留洋1, 张健1, 李宁1, 欧志华2
1 湖南大学土木工程学院,长沙 410082;
2 湖南工业大学土木工程学院,株洲 412007;
Advances in Testing Methods and Influencing Factors of Chloride Ion Transport Properties of Alkali-activated Materials
SHI Caijun1, ZHANG Liuyang1, ZHANG Jian1, LI Ning1, OU Zhihua2
1 College of Civil Engineering, Hunan University, Changsha 410082;
2 College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007;
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料中氯离子的传输是一个非常复杂的过程。在介绍水泥基材料氯离子传输机理及常用试验方法的基础上,综述了碱激发材料氯离子传输性能测试方法及影响因素。碱激发材料氯离子传输性能受激发剂种类的影响,改变矿渣掺量、碱掺量和水玻璃模数能不同程度地改变体系的氯离子传输性能。快速氯离子渗透试验结果受孔溶液化学组成影响,碱激发材料孔溶液碱性高、化学组成更复杂,孔溶液影响更显著,所以该方法不适用于评价碱激发材料氯离子传输性能。自然扩散试验因时间长而不常用。非稳态电迁移试验是目前快速测试水泥基材料中氯离子传输性能最好的方法,但由于碱激发材料与普通水泥基材料的碱度不同,其变色边界氯离子浓度也会不同,将该方法用于评价碱激发材料时,还需进一步研究测试样品的准备和硝酸银变色边界氯离子浓度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史才军
张留洋
张健
李宁
欧志华
关键词:  碱激发材料  氯离子  传输性能  测试方法  影响因素    
Abstract: The transportation of chloride ions within cement-based materials is a complicated process. In this paper, the mecha-nism for transportation of chloride ions and the testing methods for Portland cement system are introduced firstly. On that basis, the factors influencing the chloride transportation of alkali-activated materials and the testing methods for chloride transportation properties of alkali-activated materials are reviewed. The type of activators, slag content, alkali dosage and modulus of water-glass is closely related to the chloride penetration resistance of alkali-activated materials. The high alkalinity and complex chemical composition of pore solution of alkali-activated materials hinders the application of rapid chloride penetration test, whose measurements are affected by composition and concentration in pore solution of testing samples. The natural diffusion test is a time-consumption method, which is not commonly used in practical. Unsteady electromigration test is widely applied to rapid determination of the chloride penetration resistance of Portland cement system. However, due to the different alkalinity of materials, the chloride concentration at color change boundary of Portland cement system varies from that of alkali-activated materials. Therefore, the preparation of test samples and the chloride concentration at color change boundary with silver nitrate colorimetric method in alkali-activated materials still need further study.
Key words:  alkali-activated material    chloride ion    transport property    testing method    influencing factor
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TQ172  
基金资助: *国家自然科学基金(51638008;51461135001)
作者简介:  史才军:男,1963年生,博士,教授,博士研究生导师,研究方向为土木工程材料耐久性能 E-mail:cshi@hnu.edu.cn
引用本文:    
史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
SHI Caijun, ZHANG Liuyang, ZHANG Jian, LI Ning, OU Zhihua. Advances in Testing Methods and Influencing Factors of Chloride Ion Transport Properties of Alkali-activated Materials. Materials Reports, 2017, 31(15): 95-100.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.014  或          https://www.mater-rep.com/CN/Y2017/V31/I15/95
1 Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes[M]. CRC Press,2006.
2 Shi C, Jiménez A F, Palomo A. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cem Concr Res,2011,41(7):750.
3 Provis J L, Palomo A, Shi C. Advances in understanding alkali-activated materials[J]. Cem Concr Res,2015,78:110.
4 Fernández-Jiménez A, Palomo J G, Puertas F. Alkali-activated slag mortars: Mechanical strength behaviour[J]. Cem Concr Res,1999,29(8):1313.
5 Bernal S A, Gutiérrez R M D, Provis J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolinblends[J]. Constr Building Mater,2012,33(7):99.
6 Puertas F, MartíNez-RamíRez S, Alonso S, et al. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products[J]. Cem Concr Res,2000,30(10):1625.
7 Bernal S A, Gutiérrez R M D, Pedraza A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cem Concr Res,2011,41(1):1.
8 Pacheco-Torgal F,et al. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?[J]. Constr Building Mater,2012,30(5):400.
9 Guerrieri M, Sanjayan J, Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated tempe-ratures[J]. Mater Struct,2010,43(6):765.
10 Puertas F, Palacios M, Gil-Maroto A, et al. Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type[J]. Cem Concr Compos,2009,31(5):277.
11 Shi C J, Deng D H, et al. Pore structure and chloride ion transport mechanisms in concrete[J]. Key Eng Mater,2006,302-303(3):528.
12 Streicher P E, Alexander M G. A critical evaluation of chloride diffusion test methods for concrete[C] ∥Proceedings of the third CANMET/ACI international conference on concrete durability. Nice, France,1994.
13 Stanish K D, Hooton R D, Thomas M D A. Testing the chloride penetration resistance of concrete: A literature review[R]. FHWA contract DTFH61.Canada:University of Toronto,1997:19.
14 Shi Caijun, Yuan Qiang, Deng Dehua, et al. Test methods for the transport of chloride ion in concrete[J]. J Chinese Ceram Soc,2007,35(4):522(in Chinese).
史才军, 元强, 邓德华,等. 混凝土中氯离子迁移特征的表征[J]. 硅酸盐学报,2007,35(4):522.
15 ASTM C1202. Electrical indication of concrete′s ability to resist chloride ion penetration [S]. Washington D C, USA: American Society for Testing and Materials,2000.
16 NORDTEST NT BUILD 492. Chloride migration coefficient from non-steady-state migration experiments [S]. Finland: Nordtest,1999.
17 NORDTEST NT BUILD 443. Accelerated chloride penetration [S].Finland: Nordtest,1995.
18 Shi C. Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test(AASHTO T277and ASTM C1202) results[J]. Aci Mater J,1998, 95(4):389.
19 Shi C. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results[J]. Cem Concr Res,2004,34(3):537.
20 Shi C. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cem Concr Res,1996, 26(12):1789.
21 Lloyd R R, Provis J L, Deventer J S J V. Pore solution composition and alkali diffusion in inorganic polymer cement[J]. Cem Concr Res,2010,40(9):1386.
22 Liu Xiaojin, Shi Caijun, et al. Study of hydration and microstructure of alkali-activated slag cement and portland cement by impedance spectroscopy[J]. Mater Rev:Res,2015,29(10):130(in Chinese).
刘小金, 史才军, 等. 用交流阻抗研究碱激发矿渣水泥与硅酸盐水泥的水化和微观结构[J]. 材料导报:研究篇, 2015,29(10):130.
23 Tang L, Nilsson L O. Rapid determination of the chloride diffusivity in concrete by applying an electrical field[J]. Am J Geriatric Psychia-try,1992,10(1):24.
24 AEC LABORATORY. Concrete testing, hardened concrete. Chloride penetration, APM 302, 2nd ed [S]. Vedbek, Denmark: AEC Laboratory,1991.
25 Ravikumar D, Neithalath N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J]. Cem Concr Res,2013,47(5):31.
26 Ravikumar D, Neithalath N. An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes[J]. Cem Concr Compos,2013,44(44):58.
27 Tang L. Chloride transport in concrete—Measurement and prediction: Thèse[M]. Epfl,1996.
28 Otsuki N, Nagataki S, Nakashita K. Evaluation of the AgNO3, solution spray method for measurement of chloride penetration into hardened cementitious matrix materials[J]. Constr Building Mater,1992,7(4):195.
29 Yuan Q, Deng D, Shi C, et al. Application of silver nitrate colorimetric method to non-steady-state diffusion test[J]. J Central South University,2012,19(10):2983.
30 He F, Shi C, Yuan Q, et al. AgNO3 -based colorimetric methods for measurement of chloride penetration in concrete[J]. Constr Building Mater,2012,26(1):1.
31 Ismail I, Bernal S A, Provis J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Constr Building Mater,2013,48(11):1187.
32 Douglas E, Bilodeau A, Malhotra V M. Properties and durability of alkali-activated slag concrete[J]. Aci Mater J,1992,89(5):509.
33 Chen Qiao. Research on chloride ion permeability and reinforcement corrosion of alkali activated slag concrete[D]. Chongqing: Chongqing University,2008(in Chinese).
陈乔. 碱矿渣混凝土氯离子渗透及钢筋锈蚀性能研究[D]. 重庆:重庆大学,2008.
34 Chen Qiao, Cong Gang, Yang Changhui. The influences of mineral admixtures on chloride ion permeability in alkali activated slag concrete[J]. China Concr Cem Products,2008(3):11(in Chinese) .
陈乔, 丛钢, 杨长辉. 矿物掺合料对碱矿渣混凝土氯离子渗透性的影响[J]. 混凝土与水泥制品,2008(3):11.
35 Park J W, et al. Resistance of alkali-activated slag concrete to chloride-induced corrosion[J]. Adv Mater Sci Eng,2015,2015:1.
36 Mejia R, Delvasto S, Gutierrez C, et al. Chloride diffusion measured by a modified permeability test in normal and blended cements[J]. Adv Cem Res,2003,15(3):113.
37 ASTM C1543. Standard test method for determining the penetration of chloride ion into concrete by ponding[S]. Washington D C, USA: American Society for Testing and Materials,2010.
38 He F, Shi C, Yuan Q, et al. Calculation of chloride concentration at color change boundary of AgNO3, colorimetric measurement[J]. Cem Concr Res,2011,41(11):1095.
39 Ma Q, Nanukuttan S V, Basheer P A M, et al. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes[J]. Mater Struct,2016,49(9):1.
40 Zhu H, Zhang Z, Zhu Y, et al. Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars[J]. Constr Building Mater,2014,65(13):51.
41 Parˇízek L, Bílek V, Brˇezina M. Chloride resistance of alkali activated slag pastes with fly ash replacement[J].Mater Sci Forum,2016,851:98.
42 Yang T, Yao X, Zhang Z. Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF)[J]. Constr Building Mater,2014,69(11):109.
43 Liu Xiaojin. The study of hydration and microstructure of alkali-activated slag cements by impedance spectroscopy[D]. Changsha: Hunan University,2015(in Chinese).
刘小金. 用交流阻抗方法研究碱激发矿渣水泥浆体水化和微观结构[D]. 长沙:湖南大学,2015.
44 Wang S D, Scrivener K L, Pratt P L. Factors affecting the strength of alkali-activated slag[J]. Cem Concr Res, 1994, 24(6):1033.
45 Kim J C, Kim J K. Studies on the hydration of alkali activated slag [C]// Beijing International Symposium on Cement and Concrete.Beijing,1993.
46 Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali-slag cements[J]. Cem Concr Res,2002,32(8):1181.
47 Bernal S A, Provis J L, Rose V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolinblends[J]. Cem Concr Compos,2011,33(1):46.
48 Ravikumar D, et al. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH[J]. Cem Concr Compos,2012,34(7):809.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[3] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[4] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[5] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[6] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[7] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[8] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[9] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[10] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[11] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[12] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[13] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[14] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[15] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed