Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23110226-8    https://doi.org/10.11896/cldb.23110226
  无机非金属及其复合材料 |
阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响
汪淑琪, 左晓宝*, 邹欲晓, 刘嘉源
南京理工大学安全科学与工程学院(应急管理学院),南京 210094
Influence of Cation on the Chloride Binding Capacity of Limestone Calcined Clay Cement Paste
WANG Shuqi, ZUO Xiaobao*, ZOU Yuxiao, LIU Jiayuan
School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science & Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 7880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用石灰石、煅烧黏土和水泥制备LC3净浆试件,开展硬化LC3净浆颗粒在不同浓度NaCl、CaCl2和MgCl2溶液中的浸泡实验,研究浸泡溶液中氯离子浓度、LC3净浆颗粒的物相组成和微结构在浸泡实验前后的变化规律,分析氯盐中Na+、Ca2+、Mg2+等不同阳离子对LC3净浆氯离子结合能力的影响。结果表明,三种阳离子对氯离子结合能力的影响程度依次为Mg2+ > Ca2+ > Na+;Mg2+和Ca2+促进了Friedel盐的生成,可提高LC3净浆的化学结合氯离子能力;Ca2+能够影响C-(A)-S-H凝胶的含量和结构,增加其物理吸附氯离子能力,而Mg2+浓度较高时可生成M-S-H凝胶,导致LC3净浆的物理吸附氯离子能力下降,但Na+对LC3净浆的物理吸附氯离子能力影响不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪淑琪
左晓宝
邹欲晓
刘嘉源
关键词:  LC3  阳离子  氯离子  化学结合能力  物理吸附能力    
Abstract: Immersion experiments of hardened LC3 paste particles, which prepared by limestone, calcined clay, and cement, were carried out in diffe-rent concentrations of NaCl, CaCl2 and MgCl2 solutions to investigate the changing law of the chloride ion concentration in the immersion solution, the physical composition, and the microstructure of the LC3 paste particles with the immersion time. The effect of different cations, such as Na+, Ca2+ and Mg2+ on the chloride binding capacity of LC3 paste were also analyzed. The results showed that the effect of the three cations on the chloride binding capacity of LC3 paste was Mg2+ > Ca2+ > Na+. Mg2+ and Ca2+ can promote the formation of Friedel's salt, which can improve the chemical binding capacity of chlorides in LC3 paste. Ca2+ can influence the content and structure of C-(A)-S-H gel to increase its physical adsorption capacity of chlorides. When the concentration of Mg2+ is higher, M-S-H gel can be formed to resulting in a decrease of the physical adsorption capacity of chlorides, but Na+ has no apparent influence on the physical adsorption capacity of chlorides.
Key words:  LC3    cation    chloride ion    chemical binding capacity    physical adsorption capacity.
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52078252;52378242);江苏省研究生科研与实践创新计划项目(KYCX23_0497)
通讯作者:  *左晓宝,博士后,1968年3月生,南京理工大学教授、博士研究生导师。主要从事混凝土耐久性及结构防灾研究。xbzuo@sina.com   
作者简介:  汪淑琪,南京理工大学理学院土木工程系硕士研究生,在左晓宝教授的指导下进行研究,主要研究领域为低碳胶凝材料及其耐久性等。
引用本文:    
汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
WANG Shuqi, ZUO Xiaobao, ZOU Yuxiao, LIU Jiayuan. Influence of Cation on the Chloride Binding Capacity of Limestone Calcined Clay Cement Paste. Materials Reports, 2025, 39(3): 23110226-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110226  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23110226
1 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Materials, 2009, 23(1), 1.
2 Scrivener K, Martierna F, Bishnoi S, et al. Cement and Concrete Research, 2018, 114, 49
3 Avet F, Scrivener K. Cement and Concrete Research, 2018, 107, 124.
4 Dong Y M, Qian X, Hu C L, et al. Journal of the Chinese Ceramic Society, 2023, 51(9), 2446(in Chinese).
董烨民, 钱雄, 胡传林, 等. 硅酸盐学报, 2023, 51(9), 2446.
5 Shi Z G, Geiker M R, De Weerdt K, et al. Cement and Concrete Research, 2017, 95, 205.
6 Gou M F, Guan X M, Sun Q. Journal of Building Materials, 2015, 18(3), 363 (in Chinese).
勾密峰, 管学茂, 孙倩. 建筑材料学报, 2015, 18(3), 363.
7 Liu X, Feng P, Shen X Y, et al. Materials Reports, 2021, 35(9), 9157 (in Chinese).
刘新, 冯攀, 沈叙言, 等. 材料导报, 2021, 35(9), 9157.
8 Wang X G, Shi C J, He F Q, et al. Journal of the Chinese Ceramic Society, 2013, 41(2), 187(in Chinese).
王小刚, 史才军, 何富强, 等. 硅酸盐学报, 2013, 41(2), 187.
9 Guo L P, Xue X L, Cao Y Z, et al. Materials Reports, 2021, 35(2), 2039(in Chinese).
郭丽萍, 薛晓丽, 曹园章, 等. 材料导报, 2021, 35(2), 2039.
10 De Weerdt K, Colombo A, Coppola L, et al. Cement and Concrete Research, 2015, 68, 196.
11 Fei X P, Guo L P, Wu J D, et al. Construction and Building Materials, 2023, 392, 131967.
12 Farnam Y, Villani C, Washington T, et al. Construction and Building Materials, 2016, 111, 63.
13 The state bureau of quality and technical supervision. Method of testing cements-Determination of strength (GB/T 17671-1999). Standards Press of China, 1999 (in Chinese).
国家质量技术监督局. 水泥胶砂强度检测方法 (GB/T 17671-1999), 中国标准出版社, 1999.
14 Cheewaket T, Jaturapitakkul C, Chalee W. Construction and Building Materials, 2010, 24(8), 1352.
15 William W, Nicolas J G, Fabien G, et al. Cement and Concrete Research, 2022, 156, 106747.
16 Long W J, Zhang X, Feng G L, et al. Cement and Concrete Composites, 2022, 132, 104603.
17 Tang H Y, Zuo X B, Zou Y X, et al. Journal of Building Materials, 2023, 26(6), 571 (in Chinese).
汤昊源, 左晓宝, 邹欲晓, 等. 建筑材料学报, 2023, 26(6), 571.
18 Cheng S K, Shui Z H, Sun T, et al. Construction and Building Materials, 2019, 204, 265.
19 Liu X, Feng P, Yu X H, et al. Cement and Concrete Research, 2022, 160, 106901.
20 Hong S X, Qin S F, Liu Z M, et al. Construction and Building Materials, 2021, 276, 122259.
21 Yang J, Zhang G Z, Ding Q J, et al. Journal of Building Materials, 2022, 25(6), 565(in Chinese)
杨军, 张高展, 丁庆军, 等. 建筑材料学报, 2022, 25(6), 565.
22 Tan L F, Qu B, Shi C J, et al. Materials Reports, 2020, 34(12), 12057(in Chinese)
覃丽芳, 曲波, 史才军, 等. 材料导报, 2020, 34(12), 12057.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[4] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[5] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[6] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[7] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[8] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[9] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[10] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[11] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[12] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[13] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[14] 王少伟, 肖焰钰, 朱平华, 严先萃, 夏群. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 23020121-7.
[15] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed