Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22020091-7    https://doi.org/10.11896/cldb.22020091
  无机非金属及其复合材料 |
混凝土暴露试验的稳定时长与试验分析方法
杨绿峰1,2,†,*, 龙凤波1,3,†, 孙继玮1,2, 陈俊武2,4
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
3 中建西部建设建材科学研究院,成都 610218
4 华蓝设计有限公司,南宁 530011
Stable Exposure Duration of Field Test of Concrete and Its Analytical Technique
YANG Lufeng1,2,†,*, LONG Fengbo1,3,†, SUN Jiwei1,2, CHEN Junwu2,4
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
3 China West Construction Academy of Building Materials Co., Ltd., Chengdu 610218, China
4 Hualan Design Co., Ltd., Nanning 530011, China
下载:  全 文 ( PDF ) ( 5638KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土自然暴露试验通常用于研究混凝土的氯离子扩散系数,但需要选择合适的分析方法,并确定稳定暴露时长。为此,首先系统研究混凝土的氯离子瞬时扩散和平均扩散理论,明确扩散方程中不同参数的时变特性,揭示了瞬时扩散解析解在分析混凝土中氯离子扩散过程和浓度分布时与平均扩散解析解等价。然后,引入随机数模拟混凝土取样误差,利用蒙特卡洛法分析氯盐环境下混凝土暴露时长、取样误差以及不同回归分析方法对扩散系数计算结果的影响,研究表明瞬时扩散解用于混凝土自然暴露试验分析时容易受到参数迭代初值的影响,导致初始扩散系数计算结果不稳定,而平均扩散解可以避免该问题,因而平均扩散解更适合于混凝土自然暴露试验数据的回归分析。在此基础上,研究确定了不同取样误差下的混凝土稳定暴露时长。最后,通过工程实例分析验证了回归分析方法以及稳定暴露时长在氯盐环境下混凝土自然暴露试验数据分析中的合理性和必要性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绿峰
龙凤波
孙继玮
陈俊武
关键词:  混凝土  氯离子  扩散方程  初始扩散系数  稳定暴露时长    
Abstract: The field test of concrete is usually used to study the chloride diffusion coefficient of concrete, which requires an appropriate analytical technique and the stable exposure duration. To this end, the instantaneous diffusion theory and the average one were studied systematically, while parameters in the diffusion equation were specified with different time dependent property. It was proven that the analytical solution of instantaneous diffusion equation for diffusion process and concentration distribution of chloride ion in concrete was equivalent to that of average one. Then, the random number was employed to introduced sampling error in exposure test of concrete, while the Monte Carlo simulation was adopted to analyze the influence of exposure duration, sampling error and regression technique on the results of chloride diffusion coefficient of concrete under chloride environment. It was revealed that the results from the instantaneous diffusion solution was easily affected by the initial value of parameter in iteration when it was used for regression analysis of field test data of concrete, leading to instability of initial diffusion coefficient. Ho-wever, the average diffusion solution is more stable for regression analysis of chloride diffusion coefficient by using field test data of concrete exposed to chloride. Furthermore, the stable exposure duration was determined for concrete field test with different values under different sampling errors. Finally, the proposed technique of regression analysis and the stable exposure duration was validated as essential tools for treatment of field test data of concrete in chloride environment in two examples from engineering practice.
Key words:  concrete    chloride ion    diffusion equation    initial diffusion coefficient    stable exposure duration
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51738004;51678165;52002041)
通讯作者:  *杨绿峰,广西大学土木建筑工程学院教授、博士研究生导师。1998年毕业于武汉工业大学,取得结构工程专业博士学位,主要从事混凝土结构耐久性、工程结构承载力设计与优化以及结构可靠度与体系可靠度的研究。在国内外期刊发表学术论文220余篇,其中被SCI收录30余篇,EI收录130余篇。lfyang@gxu.edu.cn   
作者简介:  龙凤波,硕士,助理工程师。2022年毕业于广西大学土木建筑工程学院,取得建筑与土木工程领域工程硕士学位,主要从事混凝土耐久性研究。在国内外期刊发表学术论文2篇,其中SCI收录1篇,EI收录1篇。†共同第一作者
引用本文:    
杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
YANG Lufeng, LONG Fengbo, SUN Jiwei, CHEN Junwu. Stable Exposure Duration of Field Test of Concrete and Its Analytical Technique. Materials Reports, 2024, 38(2): 22020091-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020091  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22020091
1 Wang Y, Fu K. Construction and Building Materials, 2019, 223(1), 595.
2 Tang L, Nilsson L. Nordic Concrete Research Publication, 1992, 2(11), 162.
3 Tang L, Nilsson L O. ACI Materials Journal, 1992, 89(1), 40.
4 Al-Alaily H S, Hassan A A A. Journal of Building Engineering, 2016, 7(6), 159.
5 Kim J, Mccarter W J, Suryanto B, et al. Cement and Concrete Compo-sites, 2016, 72(6), 133.
6 Zhang J, Zhao J, Zhang Y, et al. Construction and Building Materials, 2018, 167, 225.
7 Chalee W, Jaturapitakkul C, Chindaprasirt P. Marine Structures, 2009, 22(3), 341.
8 Meira G R, Andrade C, Alonso C, et al. Cement and Concrete Compo-sites, 2010, 32(6), 427.
9 Stanish K, Thomas M. Cement and Concrete Research, 2003, 33(1), 55.
10 Mangat P S, Molloy B T. Materials and Structures, 1994, 27(6), 338.
11 Petcherdchoo A. Construction and Building Materials, 2013, 38(8), 497.
12 Wu L, Li W, Yu X. Construction and Building Materials, 2017, 152(15), 406.
13 Maage M, Helland S, Carlsen J E. In:1st RILEM Workshop on Chloride Penetration into Concrete. France, 1995, pp. 398.
14 Philip V D H, De Keersmaecker M, Elia A, et al. Cement and Concrete Composites, 2017, 80(3), 210.
15 Tang L, Gulikers J. Cement and Concrete Research, 2007, 37(4), 589.
16 Gjrv O E. Arablan Journal for Science and Engineering, 2011, 36(2), 151.
17 Song L, Sun W, Gao J. Journal of Wuhan University of Technology(Materials Science Edition), 2013, 28(2), 314.
18 Attari A, Mcnally C, Richardson M G. Construction and Building Mate-rials, 2016, 111(2), 488.
19 Audenaert K, Yuan Q, Schutter G D. Construction and Building Materials, 2010, 24(3), 396.
20 Andrade C, Castellote M, D’andrea R. Journal of Nuclear Materials, 2011, 412(1), 209.
21 Zhang J Z, Zhuang H X, Huang J, et al. Journal of Natural Disasters, 2014, 23(6), 263(in Chinese).
张俊芝, 庄华夏, 黄俊, 等. 自然灾害学报, 2014, 23(6), 263.
22 Jin W L, Xue W, Chen J. Journal of Building Structures, 2011, 32(12), 86(in Chinese).
金伟良, 薛文, 陈驹. 建筑结构学报, 2011, 32(12), 86.
23 Lu Y T, Yu H F, Ma H X, et al. Journal of Architecture and Civil Engineering, 2011, 28(4), 86(in Chinese).
卢一亭, 余红发, 马好霞, 等. 建筑科学与工程学报, 2011, 28(4), 86.
24 Yang L F, Zhou M, Chen Z. China Civil Engineering Journal, 2014, 47(10), 70(in Chinese).
杨绿峰, 周明, 陈正. 土木工程学报, 2014, 47(10), 70.
25 Collepardi M, Marcialis A, Turriziani R. Journal of the American Ceramic Society, 1972, 55(10), 534.
26 Zhang Y, Zhou X, Zhao J, et al. Construction and Building Materials, 2019, 205(2), 332.
27 Mohammed T U, Hamada H, Yamaji T. Journal of Advanced Concrete Technology, 2004, 1(1), 63.
28 Climent M A, Vera G D, Lopez J F. Cement and Concrete Research, 2002, 32(7), 1113.
29 Yang L F, Hu C Y, Chen Z, et al. Journal of Building Materials, 2013, 16(2), 210(in Chinese).
杨绿峰, 胡春燕, 陈正, 等. 建筑材料学报, 2013, 16(2), 210.
30 Cai R, Hu Y, Yu M, et al. Construction and Building Materials, 2020, 262(10), 120566.
31 Chi Q X, Si X C. Chinese Journal of Sensors and Actuators, 2006, 19(6), 2625(in Chinese).
池庆玺, 司锡才. 传感技术学报, 2006, 19(6), 2625.
32 BS 1881-124:2015. Testing concrete-part 124:methods for analysis of hardened concrete, British Standards Institution, London, 2015.
33 BS 6337-4:1984. General methods of chemical analysis- part 4:method for determination of chloride ions by potentiometry, British Standards Institution, London, 1984.
34 Safehian M, Ramezanianpour A A. Computers and Concrete, 2015, 15(4), 589.
[1] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[2] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[3] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[4] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[5] 卢通, 钱珊珊, 刘晓, 高瑞军, 郑春扬. 柠檬酸改性低分子量减水剂的合成、性能及机理[J]. 材料导报, 2024, 38(2): 22020188-6.
[6] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[7] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[8] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[9] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[10] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[11] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[12] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[13] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[14] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[15] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed