Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23070160-7    https://doi.org/10.11896/cldb.23070160
  无机非金属及其复合材料 |
高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究
田威1,*, 郭健1, 王文奎1, 张景生1,2, 王凯星1
1 长安大学建筑工程学院,西安 710061
2 中交第四公路工程局有限公司,北京 100022
NMR Analysis of Capillary Water Absorption Characteristics and Mechanical Properties of Concrete After High-temperature
TIAN Wei1,*, GUO Jian1, WANG Wenkui1, ZHANG Jingsheng1,2, WANG Kaixing1
1 School of Architecture and Engineering, Chang'an University, Xi'an 710061, China
2 CCCC Fourth Highway Engineering Bureau Co., Ltd., Beijing 100022, China
下载:  全 文 ( PDF ) ( 7434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究高温对混凝土力学性能及毛细吸水特性的影响,对高温后混凝土试样开展单轴压缩试验和毛细吸水试验,并借助核磁共振扫描(NMR)技术对孔隙结构以及毛细吸水过程进行了研究。试验结果表明,经历200、400、600及800 ℃高温作用后,混凝土的质量损失率逐渐增大,抗压强度整体呈先上升后下降的趋势。依据核磁共振T2谱的分布特征将混凝土孔隙分为微孔、中孔、毛细管孔和大孔,分析高温后混凝土吸水特性,发现混凝土吸水高度与核磁信号强度总体上呈指数函数关系;当核磁信号强度迅速增加时,水分在毛细管力的作用下,进入混凝土试样内部;当核磁信号随时间延长仍逐渐上升但增长速率逐渐降低时,试样保持吸水状态但单位时间吸水量逐渐降低;当核磁信号下降且降低速率逐渐减缓时,孔隙逐渐被水分充满,混凝土试样趋于饱和。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田威
郭健
王文奎
张景生
王凯星
关键词:  混凝土  高温  核磁共振  孔隙结构  毛细吸水    
Abstract: To investigate the influence of high temperature on the mechanical properties and capillary water absorption characteristics of concrete, uniaxial compression tests and capillary water absorption tests were conducted on concrete specimens after exposure to high temperatures of 200, 400, 600, and 800 ℃. The pore structure and capillary water absorption process were studied using Nuclear Magnetic Resonance (NMR) technology. Experimental results indicate that the mass loss rate of concrete gradually increases with exposure to temperatures of 200, 400, 600, and 800 ℃, while the compressive strength increases first and then decreases. Based on the distribution characteristics of the NMR T2 spectrum, concrete pores were classified into micropores, mesopores, capillary pores, and macropores. Analysis of the water absorption characteristics of concrete after exposure to high temperatures reveals that the water absorption height of concrete is generally exponentially related to the NMR signal intensity. When the NMR signal intensity rapidly increases, moisture enters the interior of the concrete specimen under capillary force. As the NMR signal continues to rise gradually over time but at a decreasing rate, the specimen maintains its water absorption state but with a gradually decreasing water absorption rate per unit time. When the NMR signal decreases and the rate of decrease slows down, the pores gradually are filled with moisture, and the concrete specimen tends to be saturation.
Key words:  concrete    high temperature    nuclear magnetic resonance    pore structure    capillary water absorption
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51579013);陕西省重点研发计划项目(2024SF-YBXM-615);陕西高校青年创新团队([2022]943)
通讯作者:  *田威,博士,现任长安大学教授、博士研究生导师。主要从事复杂环境下混凝土细微观破损机理,工业固废资源化处理与二氧化碳捕集利用的研究工作。tianwei@chd.edu.cn   
引用本文:    
田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
TIAN Wei, GUO Jian, WANG Wenkui, ZHANG Jingsheng, WANG Kaixing. NMR Analysis of Capillary Water Absorption Characteristics and Mechanical Properties of Concrete After High-temperature. Materials Reports, 2025, 39(3): 23070160-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070160  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23070160
1 Sun Peng, Hou Xiaomeng. Journal of Chang'an University(Natural Science Edition), 2018, 38(6), 20 (in Chinese).
孙鹏, 侯晓萌. 长安大学学报(自然科学版), 2018, 38(6), 20.
2 Bian Rui, Zhang Yan, Jiang Linhua, et al. Concrete, 2017(11), 10 (in Chinese).
卞瑞, 张研, 蒋林华, 等. 混凝土, 2017(11), 10.
3 Jia Bin. Static and dynamic mechanical behavior of concrete at elevated temperature. Master's Thesis, Chongqing University, China, 2011 (in Chinese).
贾彬. 混凝土高温静动力学特性研究. 硕士学位论文, 重庆大学, 2011.
4 Zhang Haiyan, Qi Zhuliang, Cao Liang. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1), 11 (in Chinese).
张海燕, 祁术亮, 曹亮. 防灾减灾工程学报, 2015, 35(1), 11.
5 Jiang Fuxiang, Yu Kuifeng, Zhao Tiejun, et al. Sichuan Building Science, 2010, 36(2), 34 (in Chinese).
姜福香, 于奎峰, 赵铁军, 等. 四川建筑科学研究, 2010, 36(2), 32.
6 Xiao Z J, Zhang Z C . Key Engineering Materials, 2007, 76(348-349), 937.
7 Rong Huren, Gu Jingyu, Cao Haiyun, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(5), 1573 (in Chinese).
戎虎仁, 顾静宇, 曹海云, 等. 硅酸盐通报, 2019, 38(5), 1573.
8 Jeyaprabha B, Elangovan G, Prakash P. Construction and Building Materials, 2016, 114, 688.
9 Jin Zuquan, Sun Wei, Hou Baorong, et al. Journal of Southeast University (Natural Science Edition), 2010, 40(3), 619 (in Chinese).
金祖权, 孙伟, 侯保荣, 等. 东南大学学报(自然科学版), 2010, 40(3), 619.
10 Chen Xiaoting, Zhao Renda. China Concrete and Cement Products, 2007(2), 11 (in Chinese).
陈晓婷, 赵人达. 混凝土与水泥制品, 2007(2), 11.
11 Song Baofeng, Li Heyu, Zhang Shufen, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3522 (in Chinese).
宋宝峰, 李和玉, 张淑芬, 等. 硅酸盐通报, 2020, 39(11), 3522.
12 Yao Weijing, Pang Jianyong. Acta Materiae Compositae Sinica, 2019, 36(12), 2932 (in Chinese).
姚韦靖, 庞建勇. 复合材料学报, 2019, 36(12), 2932.
13 Su Xuefeng, Zhang Yahui. Bulletin of the Chinese Ceramic Society, 2019, 38(12), 3916 (in Chinese).
苏雪峰, 张亚慧. 硅酸盐通报, 2019, 38(12), 3916.
14 Gao F, Tian W, Cheng X. Construction and Building Materials, 2021, 288, 123146.
15 Zhang Xuesong, Wu Xianghao, Li Zhiwei, et al. Building Science, 2019, 35(7), 72 (in Chinese).
张雪松, 吴相豪, 李志卫, 等. 建筑科学, 2019, 35(7), 72.
16 Yuan Bin, Fan Hongfei, Xu Bihua, et al. Materials Reports, 2023, 37(S1), 201 (in Chinese).
袁彬, 范鸿飞, 徐璧华, 等. 材料导报, 2023, 37(S1), 201.
17 Zhang Jingli, Jiu Yongzhi. Composites Science and Engineering, 2022(8), 58 (in Chinese).
张景丽, 纠永志. 复合材料科学与工程, 2022(8), 58.
18 Yang Shuhui, Gao Danying, Zhao Jun. Journal of Southeast University(Natural Science Edition) 2010, 40(S2), 102 (in Chinese).
杨淑慧, 高丹盈, 赵军. 东南大学学报(自然科学版), 2010, 40(S2), 102.
19 Zhang H, Li L, Yuan C, et al. Construction and Building Materials, 2020, 255, 262.
20 Guo Qiusheng. Industrial Construction, 2020, 50(3), 119 (in Chinese).
郭秋生. 工业建筑, 2020, 50(3), 119.
21 Guan Xiao, Zhang Pengxin, Qiu Jisheng, et al. Journal of Building Materials, 2023, 26(5), 483 (in Chinese).
关虓, 张鹏鑫, 邱继生, 等. 建筑材料学报, 2023, 26(5), 483.
22 Yin Shi, Li Beixing, Chen Pengbo, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(4), 1205 (in Chinese).
殷实, 李北星, 陈鹏博, 等. 硅酸盐通报, 2023, 42(4), 1205.
23 Gao Shizhuang, Xue Shanbin, Zhang Peng, et al. Acta Materiae Compo-sitae Sinica, 2022, 39(10), 4778 (in Chinese).
高世壮, 薛善彬, 张鹏, 等. 复合材料学报, 2022, 39(10), 4778.
24 Wang Licheng, Bao Jiuwen. Journal of Building Materials, 2014, 17(6), 972 (in Chinese).
王立成, 鲍玖文. 建筑材料学报, 2014, 17(6), 972.
25 Jiang Jianhua, Wu Qi, Fu Yongquan, et al. Journal of Building Mate-rials, 2022, 25(3), 248 (in Chinese).
蒋建华, 吴琦, 付用全, 等. 建筑材料学报, 2022, 25(3), 248.
26 Wang Xiaojing, Wang Xinxin, Zhang Wei. Journal of Tianjin University(Science and Technology), 2021, 54(3), 324 (in Chinese).
王晓静, 王鑫鑫, 张伟. 天津大学学报(自然科学与工程技术版), 2021, 54(3), 324.
27 Qu Mingliang, Tian Shuaiqi, Lin Qingyang, et al. Building Energy Efficiency, 2022, 50(9), 9 (in Chinese).
瞿铭良, 田帅奇, 林青阳, 等. 建筑节能(中英文), 2022, 50(9), 9.
28 Deng Xianghui, Gao Xiaoyue, Wang Rui, et al. Materials Reports, 2021, 35(16), 16028 (in Chinese).
邓祥辉, 高晓悦, 王睿, 等. 材料导报, 2021, 35(16), 16028.
29 Duan Pinjia, Yang Haitao, Liu Juanhong, et al. Materials Reports, 2021, 35(11), 11092 (in Chinese).
段品佳, 杨海涛, 刘娟红, 等. 材料导报, 2021, 35(11), 11092.
30 Luzar J, Padovnik A, tukovnik P, et al. Construction and Building Materials, 2020, 250, 118937.
31 Lei S, Francesco M L, Giovanni L D, et al. Cement and Concrete Research, 2021, 1, 146.
32 Han Feng. Study on mechanical properties and water infiltration properties of self-compacting concrete with hybrid fiber after high temperature. Master's Thesis, Northeast Electric Power University, China, 2022 (in Chinese).
韩丰. 高温后混杂纤维自密实混凝土力学性能和水渗性能研究. 硕士学位论文. 东北电力大学, 2022.
33 Yan Ruizhen. Influence of high temperature on physical and mechanical properties of C40 high performance concrete. Ph. D. Thesis. Taiyuan University of Technology, China, 2015 (in Chinese).
阎蕊珍. 高温对C40高性能混凝土物理力学性能的影响. 博士学位论文. 太原理工大学, 2015.
34 Zhai Cheng, Sun Yong, Fan Yiren, et al. Journal of China Coal Society, 2022, 47(2), 828 (in Chinese).
翟成, 孙勇, 范宜仁, 等. 煤炭学报, 2022, 47(2), 828.
35 She A, Yao W, Yuan W. Journal of Central South University, 2013, 20(4), 1109.
36 Liu L, He Z, Cai X, et al. Applied Magnetic Resonance, 2021, 52, 15.
37 Mehta P K, Monteiro P J M. Concrete:microstructure, properties, and materials, McGraw-Hill Education, USA, 2014.
38 Yan Jianping, Wen Danni, Li Zunzhi, et al. Chinese Journal of Geophysics, 2016, 59(3), 313.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[4] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[5] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[8] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[9] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[10] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[11] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[12] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[15] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[1] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[2] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[3] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[4] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[5] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[6] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[7] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[8] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[9] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
[10] Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN. Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel[J]. Materials Reports, 2018, 32(2): 234 -237 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed