Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23070146-9    https://doi.org/10.11896/cldb.23070146
  无机非金属及其复合材料 |
酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析
周志刚*, 何斯华, 黎凯, 黄红明, 章泽鹏
长沙理工大学道路结构与材料交通行业重点实验室,长沙 410114
Study on Strength Characteristics of Cement Stabilized Crushed Stone Simultaneously Subjected to Acid Rain, Dry-Wet Cycling and Repetitive Load
ZHOU Zhigang*, HE Sihua, LI Kai, HUANG Hongming, ZHANG Zepeng
Key Laboratory of Road Structure and Materials Transportation Industry, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 18500KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究酸雨环境中水泥稳定碎石基层的力学性能,通过室内试验模拟水泥稳定碎石受酸雨、干湿循环和荷载循环等多因素的综合作用,并对试件进行中性化测试和微观检测,揭示不同酸度、干湿循环周期和荷载循环次数下水泥稳定碎石基层的强度劣化规律。试验结果表明:在7个周期的干湿循环作用下,水泥稳定碎石试件的强度会随着溶液酸性的增强而增加,并且在短期的酸雨侵蚀试验中,试件内部的中性化程度很低;在pH=3的酸雨环境中,随着干湿循环作用次数的增加,试件由外而内不断劣化,其强度随之降低;在同样的酸雨环境中,干湿循环和荷载循环综合作用对试件强度的削弱更为明显,而且两者作用的顺序不同亦会对试件强度产生不同的影响。在此基础上建立了多因素作用下水泥稳定碎石的强度演化模型,通过与实测值进行对比验证,该模型预测精度较高,可用于旧路改造中水泥稳定碎石基层残余强度的预估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周志刚
何斯华
黎凯
黄红明
章泽鹏
关键词:  酸雨  干湿循环  荷载循环  水泥稳定碎石  强度  演化模型    
Abstract: In order to study the mechanical properties of cement stabilized crushed stone base in acid rain environment, this work simulates the comprehensive effects of multiple factors such as acid rain, dry-wet cycle, and repetitive load on cement stabilized crushed stone through indoor experiments, and conducts neutralization tests and microscopic tests on the specimens to reveal the strength degradation law of cement stabilized crushed stone base under different acidity, dry-wet cycle, and repetitive load times. The experimental results show that under the action of 7 cycles of wet-dry cycle, the strength of cement stabilized crushed stone specimens increases with the increase of solution acidity, and in short-term acid rain erosion tests, the degree of neutralization inside the specimens is very low. In an acid rain environment with pH=3, as the number of dry-wet cycles increases, the specimen deteriorated from the outside to the inside, resulting in a decrease in its strength; In the same acid rain environment, the combined effects both dry-wet cycle and load cycle weaken the strength of the specimen more significantly, and the order of these two cycles have different effects on the specimen. On this basis, a strength evolution model of cement stabilized crushed stone under multiple factors was established. By comparing and verifying with measured values, the model has high prediction accuracy and can be used to estimate the residual strength of cement stabilized crushed stone base in old road renovation.
Key words:  acid rain    dry-wet cycle    repetitive load    cement stabilized crushed stone    strength    evolution model
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  U416  
基金资助: 国家自然科学基金(51878079);广东省佛山市交通科技计划项目(FS-XTLG-D-[2020]018)
通讯作者:  *周志刚,长沙理工大学交通运输工程学院教授、博士研究生导师。主要从事道路工程领域的研究。zhou_zgcs@vip.sina.com   
引用本文:    
周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
ZHOU Zhigang, HE Sihua, LI Kai, HUANG Hongming, ZHANG Zepeng. Study on Strength Characteristics of Cement Stabilized Crushed Stone Simultaneously Subjected to Acid Rain, Dry-Wet Cycling and Repetitive Load. Materials Reports, 2025, 39(3): 23070146-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070146  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23070146
1 Xu X Z, Wei J C, Yan X P, et al. Journal of China and Foreign Highway, 2023, 43(1), 36(in Chinese).
徐希忠, 韦金城, 闫翔鹏, 等. 中外公路, 2023, 43(1), 36.
2 Zhang J P, Cui S C, Cai J, et al. KSCE Journal of Civil Engineering, 2018, 22(6), 2043.
3 Xie SY, Wang S J, Yu Y, et al. Environmental Monitoring in China, 2020, 36(4), 80(in Chinese).
解淑艳, 王胜杰, 于洋, 等. 中国环境监测, 2020, 36(4), 80.
4 Zhang Q, Hu J R, Peng Y H. Highway, 2004, 49(2), 104(in Chinese).
张倩, 胡建荣, 彭余华. 公路, 2004, 49(2), 104.
5 Zhang Y Z, Fan Y F, Li H N. International Journal of Corrosion, 2012, 2012(1). https:∥doi. org/10. 1155/2012/172394
6 He K, Yang H, Lu Z B, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(3), 498.
7 Ortega J M, García-Vera V E, Solak A M, et al. Applied Sciences, 2019, 9(24), 5297.
8 Zhang Y Z, Fan Y F, Li H G, et al. Journal of Building Materials, 2012, 15(6), 857(in Chinese).
张英姿, 范颖芳, 李宏男, 等. 建筑材料学报, 2012, 15(6), 857.
9 Zhang Y Z, Gu L Y, Li W G, et al. International Journal of Low-Carbon Technologies, 2019, 14(2), 89.
10 Chen M C, Xia F, Wang K, et al. Concrete, 2014, 296(6), 112(in Chinese).
陈梦成, 夏峰, 王凯, 等. 混凝土, 2014, 296(6), 112.
11 Wang X G, Chen H, Fu X G. Journal of Building Materials, 2018, 21(3), 358(in Chinese).
王信刚, 陈皓, 扶兴国. 建筑材料学报, 2018, 21(3), 358.
12 Zhou C L, Zhu Z M, Zhu A J, et al. Construction and Building Materials, 2019, 228, 116809.
13 Gao L, Lai Y, Islam Pramanic M R, et al. Materials, 2021, 14(10), 2670.
14 Fan Y F, Hu Z Q, Zhang Y Z, et al. Construction and Building Materials, 2010, 24(10), 1975.
15 Yuan X L, Li B X, Zhu W K, et al. Materials Reports, 2022, 36(22), 221(in Chinese).
袁晓露, 李北星, 祝文凯, 等. 材料导报, 2022, 36(22), 221.
16 Li J. Concrete, 2015, 311(9), 119(in Chinese).
李军. 混凝土, 2015, 311(9), 119.
17 Zhang Y, Niu D T, Yang H X. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 1995(in Chinese).
张扬, 牛荻涛, 杨红霞. 硅酸盐通报, 2017, 36(6), 1995.
18 Wang Y, Niu D T, Song Z P. Materials Reports, 2014, 28(24), 120(in Chinese).
王艳, 牛荻涛, 宋占平. 材料导报, 2014, 28(24), 120.
19 Shen Y, Wang G X, Lu S N, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3977(in Chinese).
沈阳, 王功勋, 卢胜男, 等. 硅酸盐通报, 2018, 37(12), 3977.
20 Chen R, Yang K, Qiu X J, et al. Construction and Building Materials, 2017, 149, 921.
21 Yuan F, Chen M C, Huang H, et al. Thin-Walled Structures, 2018, 122, 90.
22 Niu J G, Zhang Z, Niu D T. Advanced Materials Research, 2011, 243, 5760.
23 Zhang Q S, Zheng S S, Song Z M, et al. Building structure, 2018, 48(14), 103(in Chinese).
张秋石, 郑山锁, 宋哲盟, 等. 建筑结构, 2018, 48(14), 103.
24 Li B X, Cai L H. Journal of the Chinese Ceramic Society, 2013, 41(10), 1375(in Chinese).
李北星, 蔡老虎. 硅酸盐学报, 2013, 41(10), 1375.
25 Jahani F, Devinny J, Mansfeld F, et al. Journal of Environmental Engineering, 2001, 127(7), 572.
26 Song Z G, Zhang X S, Min H G. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(3), 527.
27 Ministry of Transport of the People's Republic of China. Technical guidelines for construction of highway roadbases (JTGT F20-2015), China Communication Press, 2015. pp. 18(in Chinese).
中华人民共和国交通运输部. 公路路面基层施工技术细则(JTGT F20-2015). 人民交通出版社, 2015. pp. 18.
28 Ministry of Transport of the People's Republic of China. Test methods of materials stabilized with inorganic binders for highway engineering(JTG E51-2009), China Communication Press, 2009. pp. 96(in Chinese).
中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程(JTG E51-2009). 人民交通出版社, 2009. pp. 96.
29 Li B X, Wang K, Zhu W K. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 2026(in Chinese).
李北星, 王凯, 祝文凯. 硅酸盐通报, 2017, 36(6), 2026.
30 YinJ, Gong S H, Zhang X C, et al. Journal of Railway Science and Engineering, 2011, 8(4), 28(in Chinese).
尹健, 龚胜辉, 张贤超, 等. 铁道科学与工程学报, 2011, 8(4), 28.
31 Zhao Y F, Zhao J Q, Yang L F, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(9), 2941(in Chinese).
赵宇飞, 赵家琦, 杨绿峰, 等. 硅酸盐通报, 2018, 37(9), 2941.
32 Yang L F, Cai R, Yu B. Ocean Engineering, 2017, 138, 105.
33 Li H, An P, Gao J Q, et al. Highway, 2021, 66(6), 59(in Chinese).
李昊, 安平, 高俊启, 等. 公路, 2021, 66(6), 59.
34 Tong P. Study on PVA fiber cement stabilized macadam base material and structure performance. Master's Thesis, Chongqing Jiaotong University, China, 2018(in Chinese).
童攀. PVA纤维水泥稳定碎石基层材料及结构性能研究. 硕士学位论文, 重庆交通大学, 2018.
35 Niu J G, Liu H Z, Zuo F L, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(3), 996(in Chinese).
牛建刚, 刘洪振, 左付亮, 等. 硅酸盐通报, 2017, 36(3), 996.
36 Zhang X G, Kuang X M, Zhang X X, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(10), 3187(in Chinese).
张向冈, 邝肖梅, 张轩轩, 等. 硅酸盐通报, 2018, 37(10), 3187.
37 Zhang G Z, Sha A M. Journal of Highway and Transportation Research and Development, 2005, 22(6), 27(in Chinese).
张嘎吱, 沙爱民. 公路交通科技, 2005, 22(6), 27.
38 Yuan X L, Li B X, Zhu W K, et al. Materials Reports, 2022, 36(22), 217(in Chinese).
袁晓露, 李北星, 祝文凯, 等. 材料导报, 2022, 36(22), 217.
39 Kawabata Y, Ueda N, Miura T, et al. Cement and Concrete Composites, 2021, 121, 104062.
[1] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[4] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[5] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[6] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[7] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[8] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[9] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[10] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[11] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[12] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[13] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[14] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[15] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed