Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 21100131-9    https://doi.org/10.11896/cldb.21100131
  无机非金属及其复合材料 |
Si光阳极稳定性提高策略研究进展
王蜀湘1, 卢星宇1, 邹力1, 任洁1, 王留留1, 谢佳乐1,2,*
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
Research Progress on Improvement Strategies of Silicon Photoanode Stability
WANG Shuxiang1, LU Xingyu1, ZOU Li1, REN Jie1, WANG Liuliu1, XIE Jiale1,2,*
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 10546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光电化学水分解技术实现绿氢制取是解决人类面临的能源危机和环境污染的极有效与可行的途径之一,受到广泛的关注与研究。半导体Si作为一种优异的光电极材料,具有理想的1.12 eV窄带隙、宽太阳光谱吸收范围(300~1 100 nm)、高的载流子传输性能(晶体硅μn=1 350 cm2/(V·s),μp=500 cm2/(V·s),常温)以及高结晶性等优点。但是,Si的价带边远低于水分解析氧反应1.23 VRHE,以及析氧反应涉及四电子转移过程,导致Si光阳极本征析氧反应动力学缓慢;同时,Si光阳极表面会生成绝缘性SiO2层或SiO2(OH)2-层,导致严重的光腐蚀和稳定性问题等,成为限制其实际应用的重大挑战。近年来,研究者提出了许多提高Si光阳极光氢转换效率与稳定性的策略。本文重点对Si光阳极的提高策略研究进展进行综述,包括催化层、保护层、电解液保护以及界面工程四类;其次对光电化学水分解基本原理以及Si半导体材料作光阳极的可行性与优缺点进行分析;最后基于上述研究进展,对提高Si光阳极效率与稳定性的未来发展进行了综述与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蜀湘
卢星宇
邹力
任洁
王留留
谢佳乐
关键词:  Si光阳极  光电化学水解  稳定性  提高策略    
Abstract: Green hydrogen produced by photoelectrochemical water splitting technology is one of the most effective and feasible approaches to solve the energy crisis and environmental pollution, which has attracted extensive attention and research. The semiconductive silicon is an excellent photoelectrode material, which has several advantages such as an ideal narrow band gap of 1.12 eV, the wide solar spectrum absorption (300—1 100 nm), and the high carrier mobility (Crystal Si, μn=1 350 cm2/(V·s), μp=500 cm2/(V·s), RT) and high crystallinity. However, the valence band edge is far lower than the potential of water oxidation (1.23 VRHE). The water oxidation reaction is a four-electron transfer process. Thus, the intrinsic oxygen evolution kinetics of silicon photoanodes is sluggish. Meanwhile, the insulating SiO2 or/and SiO2(OH)2- generated on the surface of silicon photoanodes would induce the serious photocorrosion and the issue of stability. The above limits greatly hinder the practical applications of silicon photoanodes. Recently, researchers have developed some strategies to improve the solar-to-hydrogen efficiency and stabi-lity of silicon photoanodes. This review focuses on the research progress of protection strategies of silicon photoanodes, including four improvement strategies:catalytic layer, protective layer, electrolyte protection and interface engineering. Secondly, the basic principle of photoelectrochemical water splitting and the feasibility, advantages and disadvantages of silicon semiconductor material as photoanode are analyzed. Finally, we discuss the perspectives on the potential investigation directions for improving the efficiency and stability of silicon photoanodes.
Key words:  silicon photoanode    photoelectrochemical water splitting    stability    improvement strategy
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  O64  
基金资助: 四川省天府峨眉计划项目;国家自然科学基金委青年项目(21703150);四川省科技计划项目(2020YJ0123);西南石油大学“揭榜挂帅”项目(2021JBGS08)
通讯作者:  *谢佳乐,博士,四川省高层次人才引进计划入选者,副研究员,硕士研究生导师。曾于2009年和2014年获得西南大学学士和博士学位;此后在西南大学和德国伊尔梅瑙工业大学以博士后和访问学者身份开展研究工作,现任教于西南石油大学。长期从事低维纳米材料和光伏制氢等相关领域的研究,并取得了一系列研究成果,以第一或通信作者身份在Energy & Environmental Science、Nano Energy、Journal of Materials Chemistry A、ACS Sustainable Chemistry & Engineering等专业期刊上发表学术论文44篇,获授权或公开美国和中国发明专利9项,参与编著出版3部学术专著。jialexie@swpu.edu.cn   
作者简介:  王蜀湘,2020年6月毕业于西南石油大学,获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。
引用本文:    
王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
WANG Shuxiang, LU Xingyu, ZOU Li, REN Jie, WANG Liuliu, XIE Jiale. Research Progress on Improvement Strategies of Silicon Photoanode Stability. Materials Reports, 2024, 38(2): 21100131-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21100131  或          https://www.mater-rep.com/CN/Y2024/V38/I2/21100131
1 Boettcher S W, Spurgeon J M, Putnam M C, et al. Science, 2010, 327(5962), 185.
2 Yang J, Walczak K, Anzenberg E, et al. Journal of the American Chemical Society, 2014, 136(17), 6191.
3 Yu Y, Zhang Z, Yin X, et al. Nature Energy, 2017, 2(6), 17045.
4 Luo Z, Wang T, Gong J. Chemical Society Reviews, 2019, 48(7), 2158.
5 Xia Z, Zhou X, Li J, et al. Science Bulletin, 2015, 60(16), 1395.
6 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
7 Grätzel M. Nature, 2001, 414(6861), 338.
8 Bak T, Nowotny J, Rekas M, et al. International Journal of Hydrogen Energy, 2002, 27(10), 991.
9 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38(1), 253.
10 Grinberg V A, Emets V V, Maslov D A, et al. New Journal of Chemistry, 2020, 44(37), 16200.
11 Ng K H, Minggu L J, Mark-Lee W F, et al. Materials Research Bulletin, 2018, 98, 47.
12 Glasscock J A, Barnes P R F, Plumb I C, et al. Journal of Physical Chemistry C, 2008, 111(44), 16477.
13 Wang F, Song L X, Teng Y, et al. RSC Advances, 2019, 9(61), 35372.
14 Seidel H, Csepregi L, Heuberger A, et al. Journal of the Electrochemical Society, 1990, 137(11), 3612.
15 Baum T, Schiffrin D J. Journal of Electroanalytical Chemistry, 1997, 436(1-2), 239.
16 Satterthwaite P F, Scheuermann A G, Hurley P K, et al. ACS Applied Materials Interfaces, 2016, 8(20), 13140.
17 Fu H J, Moreno-Hernandez I A, Buabthong P, et al. Energy & Environmental Science, 2020, 13(11), 4132.
18 Carmo M, Fritz D L, Mergel J, et al. International Journal of Hydrogen Energy, 2013, 38(12), 4901.
19 Ran J, Zhang J, Yu J, et al. Chemical Society Reviews, 2014, 43(22), 7787.
20 Scheuermann A G, Prange J D, Gunji M, et al. Energy & Environmental Science, 2013, 6(8), 2487.
21 Li S, She G, Xu J, et al. ACS Applied Materials Interfaces, 2020, 12(35), 39092.
22 Han T, Shi Y, Song X, et al. Journal of Materials Chemistry A, 2016, 4(21), 8053.
23 Oh K, Mériadec C, Lassalle-Kaiser B, et al. Energy & Environmental Science, 2018, 11(9), 2590.
24 Kenney M J, Gong M, Li Y, et al. Science, 2013, 342(6160), 836.
25 Yu X, Yang P, Chen S, et al. Advanced Energy Materials, 2016, 7(6), 1601805.
26 Loget G, Fabre B, Fryars S, et al. ACS Energy Letters, 2017, 2(3), 569.
27 Shi Y, Han T, Gimbert-Suriñach C, et al. Journal of Materials Chemistry A, 2017, 5(5), 1996.
28 Hong W, Cai Q, Ban R, et al. ACS Applied Materials Interfaces, 2018, 10(7), 6262.
29 Li S, She G, Chen C, et al. ACS Applied Materials Interfaces, 2018, 10(10), 8594.
30 Zhao J, Gill T M, Zheng X. Nano Research, 2018, 11(6), 3499.
31 Chen C, Lu Y, Fan R, et al. ChemSusChem, 2020, 13(15), 3893.
32 Li F, Li Y, Zhuo Q, et al. ACS Applied Materials Interfaces, 2020, 12(10), 11479.
33 Sun K, Mcdowell M T, Nielander A C, et al. Journal of Physical Che-mistry Letters, 2015, 6(4), 592.
34 Sun K, Saadi F H, Lichterman M F, et al. Proceedings of the National Academy of Sciences, 2015, 112(12), 3612.
35 Cui W, Wu S, Chen F, et al. ACS Nano, 2016, 10(10), 9411.
36 Young E R, Costi R, Paydavosi S, et al. Energy & Environmental Science, 2011, 4(6), 2058.
37 Lee S A, Lee T H, Kim C, et al. ACS Catalysis, 2018, 8(8), 7261.
38 Oh K, Joanny L, Gouttefangeas F, et al. ACS Applied Energy Materials, 2019, 2(2), 1006.
39 Cai Q, Hong W, Jian C, et al. Nanoscale, 2020, 12(14), 7550.
40 Zhao C, Guo B, Xie G, et al. ACS Applied Energy Materials, 2020, 3(9), 8216.
41 Chen Y W, Prange J D, Duhnen S, et al. Nature Materials, 2011, 10(7), 539.
42 Cai Q, Hong W, Jian C, et al. ACS Catalysis, 2018, 8(10), 9238.
43 Scheuermann A G, Lawrence J P, Kemp K W, et al. Nature Materials, 2016, 15(1), 99.
44 Kawde A, Annamalai A, Sellstedt A, et al. Physical Chemistry Chemical Physics, 2020, 22(48), 28459.
45 Yoon K, Lee J H, Kang J, et al. Nano Letters, 2016, 16(12), 7370.
46 Ma R, Wu S, Yu H, et al. Journal of Materials Science:Materials in Electronics, 2018, 29(15), 12700.
47 Scheuermann A G, Prange J D, Gunji M, et al. Energy & Environmental Science, 2013, 6(8), 2487.
48 Ji L, Mcdaniel M D, Wang S, et al. Nature Nanotechnology, 2015, 10(1), 84.
49 Cai Q, Hong W, Jian C, et al. Nano Energy, 2020, 70, 104485.
50 Lee D K, Choi K S. Nature Energy, 2017, 3(1), 53.
51 Liu Z, Li C, Xiao Y, et al. The Journal of Physical Chemistry C, 2020, 124(5), 2844.
52 Boettcher S W, Warren E L, Putnam M C, et al. Journal of the American Chemical Society, 2011, 133(5), 1216.
53 Zhang H, Ding Q, He D, et al. Energy & Environmental Science, 2016, 9(10), 3113.
54 Kosten E D, Warren E L, Atwater H A. Optics Express, 2011, 19(4), 3316.
55 Ying Z, Yang X, Tong R, et al. ACS Applied Energy Materials, 2019, 2(9), 6883.
56 Yao T, Chen R, Li J, et al. Journal of the American Chemical Society, 2016, 138(41), 13664.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[7] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[8] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[9] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[10] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[11] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[12] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[13] 杨昊川, 陶光明, 陈东, 董文坤, 凌世生, 乔旭升, 樊先平. 基于纤维芯层流体力学方法制备聚合物功能微球研究进展[J]. 材料导报, 2024, 38(15): 23070035-8.
[14] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[15] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed