Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060208-11    https://doi.org/10.11896/cldb.22060208
  高分子与聚合物基复合材料 |
纳米流体的制备、稳定性及热物性研究进展
江巍雪1,2,†,*, 汤新宇1,†, 宋金蔚1, 徐祚1, 张源1
1 扬州大学电气与能源动力工程学院,江苏 扬州 225100
2 西部绿色建筑国家重点实验室,西安 710055
Research Progress on Preparation, Stability and Thermophysical Properties of Nanofluid
JIANG Weixue1,2,†,*, TANG Xinyu1,†, SONG Jinwei1, XU Zuo1, ZHANG Yuan1
1 School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225100, Jiangsu, China
2 State Key Laboratory of Green Building in Western China, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 12081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一类新型固液两相流体,纳米流体相比于基础流体,其导热系数、表面张力等热物性的优势已逐渐被认可。然而,纳米颗粒的高表面活性以及颗粒间的高吸引力使纳米颗粒极易团聚并沉淀,导致纳米流体的热物性优势被削弱,进而影响传热效果。因此,制备既具优良热物性又具较强稳定性的纳米流体成为将其规模化应用的前提。为此,本文对纳米流体的制备、稳定性与热物性进行了总结分析,归纳了通过磁力搅拌、调节基液pH、超声分散技术、颗粒表面改性技术及添加表面活性剂以促进颗粒的稳定分散的技术特点。通过分析各类参数对纳米流体热物性的影响,指出解决颗粒团聚与沉淀问题的有效研究方向,以期满足纳米流体实际应用的需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江巍雪
汤新宇
宋金蔚
徐祚
张源
关键词:  纳米流体  制备  稳定性  团聚与沉淀  热物性    
Abstract: As a new type of solid-liquid two-phase fluid, nanofluid has been gradually recognized for its advantages in thermophysical properties such as thermal conductivity and surface tension compared with base fluid. Due to the high surface activity of nanoparticles and the high attraction between nanoparticles, nanoparticles are prone to agglomeration and sedimentation, which will weaken the thermophysical property advantages of nanofluid and thus affect the heat transfer efficiency. Therefore, the preparation of nanofluid with excellent thermal properties and strong stability has become the premise of its large-scale applications. To this end, the preparation, stability and thermophysical properties of nanofluid are summarized and analyzed in this paper. Also, the technical characteristics of promoting the dispersion stability of nanoparticles by magnetic stirring, adjusting the pH of the base fluid, ultrasonic dispersion technology, particle surface modification technology and adding surfactant are summarized. By analyzing the influence of various parameters on the thermophysical properties of nanofluid, the effective research direction to solve the problem of particle agglomeration and precipitation is pointed out, to finally meet the needs of the practical application of nanofluid.
Key words:  nanofluid    preparation    stability    agglomeration and precipitation    thermalphysical property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TK121  
基金资助: 西部绿色建筑国家重点实验室开放基金(LSKF202319)
通讯作者:  *江巍雪,2014 年 6 月、2019 年 9 月分别于上海理工大学和东南大学获得工学学士学位和博士学位。现为扬州大学电气与能源动力工程学院讲师,从事建环专业教学工作。目前主要研究领域为纳米流体、吸收式制冷和低品位热能的利用,发表论文 10 余篇,包括Energy Reports、Powder Technology、International Journal of Refrigeration等,申请与获授权专利多项。jiangweixue@yzu.edu.cn   
作者简介:  汤新宇,现为扬州大学电气与能源动力工程学院研究生,在江巍雪老师的指导下进行研究。目前主要研究领域为纳米流体、吸收式制冷和低品位热能的利用。†共同第一作者
引用本文:    
江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
JIANG Weixue, TANG Xinyu, SONG Jinwei, XU Zuo, ZHANG Yuan. Research Progress on Preparation, Stability and Thermophysical Properties of Nanofluid. Materials Reports, 2024, 38(4): 22060208-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060208  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22060208
1 Jang S P, Choi S U S. Applied Physics Letters, 2004, 84(21),4316.
2 Okonkwo E C, Wole-Osho I, Almanassra I W, et al. Journal of Thermal Analysis and Calorimetry, 2021, 145(6), 2817.
3 Yang L, Ji W, Zhang Z, et al. International Communications in Heat and Mass Transfer, 2019, 109, 104353.
4 Jiang W, Du K, Li Y, et al. International Journal of Refrigeration, 2017, 82, 189.
5 Song J, Jiang W, Qian H, et al. Powder Technology, 2020, 369, 311.
6 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392.
7 Zafarani-Moattar M T, Majdan-Cegincara R. Fluid Phase Equilibria, 2013, 354, 102.
8 Choi M, Choi W K, Jung C H, et al. Scientific Reports, 2020, 10(1), 1.
9 Hashimoto S, Kurazono K, Yamauchi T. International Journal of Heat and Mass Transfer, 2020, 150, 119302.
10 Sati P, Shende R C, Ramaprabhu S. Thermochimica Acta, 2018, 666, 75.
11 Suganthi K S, Vinodhan V L, Rajan K S. Applied Energy, 2014, 135, 548.
12 Huang X G. Experimental study on boiling heat transfer of nanofluid, Master’s Thesis, Jiangsu University of Science and Technology, China, 2017 (in Chinese).
黄晓干. 纳米流体沸腾换热实验研究. 硕士学位论文, 江苏科技大学, 2017
13 Minakov A V, Rudyak V Y, Pryazhnikov M I. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 279.
14 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248.
15 Barreneche C, Mondragon R, Ventura-Espinosa D, et al. Applied Thermal Engineering, 2018, 128, 121.
16 Liu C, Yan Y, Sun W, et al. Journal of Molecular Liquids, 2022, 356, 119020.
17 Zhu H T, Lin Y S, Yin Y S. Journal of Colloid & Interface Science, 2004, 277(1), 100.
18 Bönnemann H, Botha S S, Bladergroen B, et al. Applied Organometallic Chemistry, 2010, 19(6), 768.
19 Lee G J, Kim C K, Lee M K, et al. Thermochimica Acta, 2012, 542, 24.
20 Mohammadpoor M, Sabbaghi S, Zerafat M M, et al. International Journal of Refrigeration, 2019, 99, 243.
21 Ma B, Shin D, Banerjee D. Journal of Energy Storage, 2021, 35, 102278.
22 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741.
23 Wang X Q, Mujumdar A S. Brazilian Journal of Chemical Engineering, 2008, 25(4), 631.
24 Asadi A, Alarifi I M, Ali V, et al. Ultrasonics Sonochemistry, 2019, 58, 104639.
25 Chen W, Zou C, Li X. Solar Energy Materials and Solar Cells, 2019, 200, 109931.
26 Yang L, Huang J, Ji W, et al. Powder Technology, 2020, 360, 956.
27 Missana T, Adell A. Journal of Colloid and Interface Science, 2000, 230(1), 150.
28 Popa I, Gillies G, Papastavrou G, et al. The Journal of Physical Chemistry B, 2010, 114(9), 3170.
29 Dey D, Kumar P, Samantaray S. Heat Transfer—Asian Research, 2017, 46(8), 1413.
30 Zhou L, Ma H H, Ma S X, et al. Materials Reports, 2018, 32(15), 2576(in Chinese).
周璐, 马红和, 马素霞, 等. 材料导报, 2018, 32(15), 2576.
31 Paul G, Philip J, Raj B, et al. International Journal of Heat & Mass Transfer, 2011, 54(15-16), 3783.
32 Botha S S, Ndungu P, Bladergroen B J. Industrial & Engineering Che-mistry Research, 2011, 50(6), 3071.
33 Cacua K, Murshed S M, Pabón E, et al. Journal of Thermal Analysis and Calorimetry, 2020, 140(1), 109.
34 Chung S J, Leonard J P, Nettleship I, et al. Powder Technology, 2009, 194(1-2), 75.
35 Hafizi A, Rajabzadeh M, Khalifeh R. Journal of Environmental Chemical Engineering, 2020, 8(4), 103845.
36 Li F, Li L, Zhong G, et al. International Journal of Heat and Mass Transfer, 2019, 129, 278.
37 Zheng N, Wang L, Sun Z. Ultrasonics Sonochemistry, 2021, 80, 105816.
38 Tajik B, Abbassi A, Saffar-Avval M, et al. Powder Technology, 2012, 217, 171.
39 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748.
40 Li D, Dai Y, Chen X, et al. Journal of Molecular Liquids, 2022, 354, 118848.
41 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55.
42 Zareei M, Yoozbashizadeh H, Madaah Hosseini H R. Journal of Thermal Analysis and Calorimetry, 2019, 135(2), 1185.
43 Katiyar A, Harikrishnan A R, Dhar P. Colloid and Polymer Science, 2017, 295(9), 1575.
44 Cacua K, Ordoñez F, Zapata C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123960.
45 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392.
46 Assael M J, Metaxa I N, Arvanitidis J, et al. International Journal of Thermophysics, 2005, 26(3), 647.
47 Saterlie M, Sahin H, Kavlicoglu B, et al. Nanoscale Research Letters, 2011, 6(1), 1.
48 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
49 Kashiwagi T. Newsletter IEA Heat Pupm Center, 1988, 6(4), 2.
50 Das P K, Islam N, Santra A K, et al. Journal of Molecular Liquids, 2017, 237, 304.
51 Li X, Chen Y, Mo S P, et al. Journal of Chemical Industry, 2013, 64(9), 3324 (in Chinese).
李兴, 陈颖, 莫松平, 等. 化工学报, 2013, 64(9), 3324.
52 Gao T, Li C, Zhang Y, et al. Tribology International, 2019, 131, 51.
53 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741.
54 Yang L, Jiang W, Chen X, et al. International Journal of Refrigeration, 2017, 82, 366.
55 Yang Z, Yao Y P, Li Y, et al. Journal of Chemical Industry, 2022, 73(3), 1093 (in Chinese).
杨振, 姚元鹏, 李昀, 等. 化工学报, 2022, 73(3), 1093.
56 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248.
57 Michael M, Zagabathuni A, Ghosh S, et al. Journal of Thermal Analysis and Calorimetry, 2019, 137(2), 369.
58 Zhu N, Ji H, Yu P, et al. Nanomaterials, 2018, 8(10), 810.
59 Jouyandeh M, Karami Z, Ali J A, et al. Progress in Organic Coatings, 2019, 136, 105250.
60 Kora M, Ani Z, Tasi M, et al. Journal of the Serbian Chemical So-ciety, 2007, 72(11), 1115.
61 Li X, Xiong J, Xu Y, et al. Chinese Journal of Catalysis, 2019, 40(3), 424.
62 Sundar L S, Singh M K, Ramana E V, et al. Scientific Reports, 2014, 4(1), 1.
63 Zhai Y, Li L, Wang J, et al. Powder Technology, 2019, 343, 215.
64 Angayarkanni S A, Philip J. Journal of Nanofluids, 2014, 3(1), 17.
65 Elomaa O, Oksanen J, Hakala T J, et al. Tribology International, 2014, 71, 62.
66 Huminic A, Huminic G, Fleaca C, et al. Powder Technology, 2015, 284, 78.
67 Haghtalab A, Mohammadi M, Fakhroueian Z. Fluid Phase Equilibria, 2015, 392, 33.
68 Raki E, Afrand M, Abdollahi A. International Journal of Heat and Mass Transfer, 2021, 165, 120669.
69 Pang C, Jung J Y, Lee J W, et al. International Journal of Heat and Mass Transfer, 2012, 55(21-22), 5597.
70 Ghadimi A, Metselaar I H. Experimental Thermal and Fluid Science, 2013, 51, 1.
71 Etedali S, Afrand M, Abdollahi A. International Journal of Thermal Sciences, 2019, 145, 105977.
72 Suganthi K S, Rajan K S. International Journal of Heat and Mass Transfer, 2012, 55(25-26), 7969.
73 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55.
74 Jiang W, Ding G, Peng H, et al. Current Applied Physics, 2010, 10(3), 934.
75 Hong J, Kim D. Thermochimica Acta, 2012, 542, 28.
76 Bao L, Zhong C, Jie P, et al. Advances in Mechanical Engineering, 2019, 11(11), 1687814019889486.
77 Song S L, Lee J H, Chang S H. Experimental Thermal and Fluid Science, 2014, 52, 12.
78 Ham J, Kim H, Shin Y, et al. International Journal of Thermal Sciences, 2017, 114, 86.
79 Liu C D, Wang D M, Quan X J, et al. Journal of Power Engineering, 2018, 38(7), 572 (in Chinese).
刘藏丹, 王东民, 全晓军, 等. 动力工程学报, 2018, 38(7), 572.
80 Barewar S D, Tawri S, Chougule S S. Journal of Thermal Analysis and Calorimetry, 2020, 139(3), 1779.
81 Zhang J Y, Liu S, Sun W N, et al. Materials Reports, 2016, 30(S2), 160 (in Chinese).
张景胤, 刘石, 孙伟娜, 等. 材料导报, 2016, 30(S2), 160.
82 Teng T P, Hung Y H, Teng T C, et al. Applied Thermal Engineering, 2010, 30(14-15), 2213.
83 Cui W, Bai M, Lv J, et al. Industrial & Engineering Chemistry Research, 2011, 50(23), 13568.
84 Bhanushali S, Jason N N, Ghosh P, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18925.
85 Rashmi W, Ismail A F, Sopyan I, et al. Journal of Experimental Nanoscience, 2011, 6(6), 567.
86 Altun A, Şara O N, Şimşek B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127099.
87 Nawi M R M, Rehim M Z A, Azmi W H, et al. International Journal of Refrigeration, 2018, 88, 275.
88 Nguyen C T, Desgranges F, Galanis N, et al. International Journal of Thermal Sciences, 2008, 47(2), 103.
89 Yu L, Bian Y N, Liu Y, et al. Materials Reports, 2020, 34(22), 22010 (in Chinese).
于丽, 卞永宁, 刘杨, 等. 材料导报, 2020, 34(22), 22010.
90 Kedzierski M A, Brignoli R, Quine K T, et al. International Journal of Refrigeration, 2017, 74, 3.
91 Lu G, Duan Y Y, Wang X D. Journal of Nanoparticle Research, 2014, 16(9), 1.
92 Jeong J, Li C, Kwon Y, et al. International Journal of Refrigeration, 2013, 36(8), 2233.
93 Xuan Y, Li Q, Tie P. Experimental Thermal and Fluid Science, 2013, 46, 259.
94 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
95 Cabaleiro D, Estellé P, Navas H, et al. Journal of Nanofluids, 2018, 7(6), 1081.
96 Harikrishnan A R, Dhar P, Agnihotri P K, et al. The European Physical Journal E, 2017, 40(5), 1.
97 Wang G, Dong P, Lu Y, et al. International Communications in Heat and Mass Transfer, 2021, 123, 105231.
98 Kumar R, Milanova D. Applied Physics Letters, 2009, 94(7), 073107.
99 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[4] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[5] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[6] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[7] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[8] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[9] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[10] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[11] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[12] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[13] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[14] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[15] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed