Progress on Polyimide Aerogels with High Temperature Resistance
ZHANG Sizhao1,2,3,*, LIU Chun1, JIANG Yonggang2,*, FENG Jian2
1 Polymer Aerogels Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China 2 Science and Technology on Advanced Ceramic Fibers and Composite Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China 3 Postdoctoral Research Station on Mechanics, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract: Polyimide resins have so many excellent properties such as high mechanical strength, high flame resistance, high thermal stability and low dielectric constants. They are widely used in the fields of aerospace, microelectronics. Polyimide aerogels have excellent thermal insulation along with mechanical properties due to their abundant 3D nanoporous network structure combine with the properties of polyimide. However, due to the presence of abundant nanoporous network structure, the high temperature resistance of polyimide aerogels is significantly lower than that of polyimide resins, which greatly limits the application of polyimide aerogels in the field of thermal protection in aerospace high temperature environment. Based on the research status, this paper aimes at the problem of insufficient high temperature resistance of polyimide aerogels, linear and cross-linked polyimide aerogels and their main preparation methods are introduced, and systematic reviews the main strategies of domestic and foreign scholars to improve the high temperature resistance of polyimide aerogels. The applications in aerospace, pressure sensing, environmental remediation and thermal insulation of polyimide aerogels are also mentioned in the paper. Furthermore, considering the main challenges currently faced by polyimide aerogels, its future research trends have prospected.
1 Hayase G, Kanamori K, Abe K, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9466. 2 Si Y, Wang X Q, Dou L Y, et al. Science Advances, 2018, 4, 8925. 3 Zhang S Z. Synthetic design and characterization of chitosan aerogels. Ph. D. Thesis, National University of Defense Technology, China, 2018 (in Chinese). 张思钊. 壳聚糖气凝胶的构筑设计与性能研究. 博士学位论文, 国防科技大学, 2018. 4 Li X, Wang J, Zhao Y B, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16901. 5 Tian J, Yang Y, Xue T T, et al. Journal of Materials Science & Techno-logy, 2022, 105, 194. 6 Zhang Z, Wang X D, Liu T, et al. Journal of Non-Crystalline Solids, 2021, 559, 120679. 7 Nguyen B N, Scheiman D A, Meador M A B, et al. ACS Applied Polymer Materials, 2021, 3(4), 2027. 8 Jones S M. Journal of Sol-Gel Science and Technology, 2006, 40, 351. 9 Xue S Y, Jia Y, Zhang B Q, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(3), 626586 (in Chinese). 薛淑艳, 贾洋, 张冰强, 等. 航空学报, 2022, 43(3), 626586. 10 Kistler S S. Nature, 1931, 127, 741. 11 Yu Z L, Yang N, Kalkavoura V A, et al. Angewandte Chemie International Edition, 2018, 57(17), 4538. 12 Parmenter K E, Milstein F. Journal of Non-Crystalline Solids, 1988, 223(3), 179. 13 Zhu Z X. Preparation and alabtion/insulation properties of nanoporous organic aerogel composites. Ph. D. Thesis, East China University of Science and Technology, China, 2019 (in Chinese). 朱召贤. 纳米孔有机气凝胶复合材料的制备及其防隔热性能研究. 博士学位论文, 华东理工大学, 2019. 14 Zhang S Z, Wang Z, Hu Y B, et al. Biomacromolecules, 2022, 23(12), 5056. 15 Li Y, Liu X F, Nie X Y, et al. Advanced Functional Materials, 2019, 29, 1807624. 16 Corso J D, Cheatwood F, Bruce W, et al. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 2011. Dublin, 2011, pp.139. 17 Liu F Q, Wang L K, Men J, et al. Aerospace Materials & Technology, 2022, 52(2), 26 (in Chinese). 柳凤琦, 王鲁凯, 门静, 等. 宇航材料工艺, 2022, 52(2), 26. 18 Feng Z H, Shi J J, Kong L, et al. Journal of Materials Engineering, 2020, 48(8), 14 (in Chinese). 冯志海, 师建军, 孔磊, 等. 材料工程, 2020, 48(8), 14. 19 Mosanenzadeh S G, Tafreshi O A, Karamikamkar S, et al. Advances in Colloid and Interface Science, 2022, 304, 102646. 20 Guo H Q, Meador M A B, McCorkle L, et al. ACS Applied Materials & Interfaces, 2012, 4(10), 5422. 21 Pantoja M, Boynton N, Cavicchi K A, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9425. 22 Cashman J L, Nguyen B N, Dosa B, et al. ACS Applied Polymer Materials, 2020, 2(6), 2179. 23 Guo H Q, Meador M A B, Cashman J L, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 33288. 24 Deng Y R, Pan Y L, Zhang Z X, et al. Advanced Functional Materials, 2022, 32(4), 2106176. 25 Shi B L, Ma B, Wang C Q, et al. Composites Part A-Applied Science and Manufacturing, 2021, 143, 106283. 26 Fang G Q. Molucular design, synthesis and antiatomic-oxygen functionalization of polyimide aerogels. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinses). 房光强. 聚酰亚胺气凝胶的分子设计、合成及其抗原子氧功能化研究. 博士学位论文, 上海交通大学, 2016. 27 Rhine W, Wang J, Begag R. U. S. patent, 7074880, 2006. 28 Zhang S Z, Wang Z, Wang J, et al. ACS Applied Polymer Materials, 2022, 4(11), 8227. 29 Kawagishi H, Saito H, Furukawa H, et al. Macromolecular Rapid Communications, 2007, 28(1), 96. 30 Guo H Q, Meador M A B, McCorkle L, et al. ACS Applied Materials & Interfaces, 2011, 3(2), 546. 31 Meador M A B, Malow E J, Silva R, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 536. 32 Shen D X, Liu J G, Yang H X, et al. Chemistry Letters, 2013, 42, 1545. 33 Meador M A B, Aleman C R, Hanson K, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1240. 34 Simon-Herrero C, Chen X Y, Oritz M L, et al. Journal of Materials Research and Technology, 2019, 8(3), 2638. 35 Nguyen B N, Meador M A B, Scheiman D, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 27313. 36 Feng J Z, Wang X, Jiang Y G, et al. ACS Applied Materials & Interfaces, 2016, 8(20), 12992. 37 Saadatnia Z, Mosanenzadeh S G, Esmailzadeh E, et al. Scientific Reports, 2019, 9(1), 1370. 38 Mosanenzadeh S G, Alshrah M, Saadatnia Z, et al. Macromolecular Materials and Engineering, 2020, 305(4), 1900777. 39 Mosanenzadeh S G, Saadatnia Z, Shi F, et al. Polymer, 2019, 176, 213. 40 Ma S Q, Wang C Y, Cong B, et al. Chemical Engineering Journal, 2021, 431, 134047. 41 Yuan R X, Zhou Y, Lu X M, et al. Chemical Engineering Journal, 2022, 428, 131193. 42 Kim J, Kwon J, Kim S I, et al. Microporous and Mesoporous Materials, 2016, 234, 35. 43 Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. Journal of Materials Chemistry, 2010, 20(43), 9666. 44 Guo B H, Chen L, Yu J R, et al. Journal of Applied Polymer Science, 2014, 131, 40165. 45 Xie W, Pan W P, Chuang K C. Journal of Thermal Analysis and Calorimetry, 2001, 64, 477. 46 Bielawski C W, Grubbs R H. Progess in Polymer Science, 2007, 32(1), 1. 47 Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Chemistry of Materials, 2011, 23(8), 2250. 48 Wang Q Q, Zhou Y P, Zheng H B, et al. Engineering Plastics Application, 2019, 47(8), 144 (in Chinese). 王倩倩, 周燕萍, 郑会保, 等. 工程塑料应用, 2019, 47(8), 144. 49 Hou X B, Zhang R B, Fang D N. ACS Sustainable Chemistry & Engineering, 2021, 9(22), 7638. 50 Zhong A, Li J H, Zhang Y, et al. Composites Part A-Applied Science and Manufacturing, 2020, 137, 105995. 51 Wu S, Huang S M, Sun W, et al. RSC Advances, 2016, 6(27), 22868. 52 Viggiano R P, Williams J C, Schiraldi D A, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8287. 53 Zhou T, Cheng X D, Pan Y L, et al. Applied Surface Science, 2018, 437, 321. 54 Yu H J, Tong Z W, Zhang B J, et al. Chemical Engineering Journal, 2021, 418, 129342. 55 Liu T, Liang F W, Chen S, et al. Polymers for Advanced Technologies, 2023, 34(5), 1769. 56 Zhu Z X, Yao H J, Wang F, et al. Macromolecular Materials and Engineering, 2019, 304(5), 1800676. 57 Xu G F, Li M J, Wu T T, et al. Reactive and Functional Polymers, 2020, 154, 104672. 58 Zhang X H, Ni X X, He M Y, et al. Materials Chemistry Frontiers, 2021, 5(2), 804. 59 Pan Y, Zheng J, Xu Y Y, et al. Journal of Colloid and Interface Science, 2022, 628, 829. 60 Hou X B, Mao Y Q, Zhang R B, et al. Chemical Engineering Journal, 2021, 417, 129341. 61 Qiao S Y, Kang S, Zhang H, et al. Separation and Purification Technology, 2021, 276, 119393. 62 Huang D J, Wang W B, Xu J X, et al. Chemical Engineering Journal, 2012, 210, 166. 63 Wu T T, Dong J, Xu G F, et al. Polymer, 2019, 176, 196. 64 Wu T T, Dong J, France K D, et al. ACS Applied Polymer Materials, 2020, 2(9), 3876. 65 Kantor Z, Wu T T, Zeng Z H, et al. Chemical Engineering Journal, 2022, 433, 136401. 66 Fan W, Zuo L Z, Zhang Y F, et al. Composites Science and Technology, 2018, 156, 186. 67 Liu P, Tran T Q, Fan Z, et al. Composites Science and Technology, 2015, 117, 114. 68 Zhu Z X, Yao H J, Dong J X, et al. Carbon, 2019, 144, 24. 69 Zhang D L, Lin Y, Wang W, et al. Applied Surface Science, 2021, 543, 148833. 70 Qin Y Y, Peng Q Y, Ding Y J, et al. ACS Nano, 2015, 9(9), 8933. 71 Zhang X H, Li W, Song P Y, et al. Chemical Engineering Journal, 2020, 381, 122784. 72 Xue T T, Fan W, Zhang X, et al. Composites Part B-Engineering, 2021, 219, 108963. 73 Meador M A B, Wright S, Sandberg A, et al. ACS Applied Materials & Interfaces, 2012, 4(11), 6346. 74 Liu H, Chen X Y, Zheng Y J, et al. Advanced Functional Materials, 2021, 31(13), 2008006. 75 Liu J, Zhang H B, Xie X, et al. Small, 2018, 14(45), 1802479. 76 Wang Y X, He T J, Liu M Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 581, 123809. 77 Zhuo L H, Ma C, Xie F, et al. Cellulose, 2020, 27(13), 7677. 78 Zhao X Y, Yang F, Wang Z C, et al. Composites Part B-Engineering, 2020, 182, 107624. 79 Wang Y J, Cui Y, Shao Z Y, et al. Chemical Engineering Journal, 2020, 390, 124623. 80 Zhang T Y, Zhao Y, Li X K, et al. Microporous and Mesoporous Materials, 2021, 319, 111074.