Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23040260-11    https://doi.org/10.11896/cldb.23040260
  高分子与聚合物基复合材料 |
聚酰亚胺气凝胶的耐高温性能研究进展
张思钊1,2,3,*, 刘淳1, 姜勇刚2,*, 冯坚2
1 江西理工大学国际创新研究院聚合物气凝胶研究中心,南昌 330013
2 国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙 410073
3 国防科技大学空天科学学院力学博士后科研流动站,长沙 410073
Progress on Polyimide Aerogels with High Temperature Resistance
ZHANG Sizhao1,2,3,*, LIU Chun1, JIANG Yonggang2,*, FENG Jian2
1 Polymer Aerogels Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
2 Science and Technology on Advanced Ceramic Fibers and Composite Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
3 Postdoctoral Research Station on Mechanics, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 47311KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚酰亚胺树脂具有高强度、高阻燃性、高热稳定性和低介电常数等特点,在航空航天、微电子等领域均有广泛应用。聚酰亚胺气凝胶由于其丰富的纳米多孔三维网络结构与聚酰亚胺本体特性相结合,具有良好的隔热性能以及优异的力学性能。然而,由于聚酰亚胺气凝胶丰富的纳米多孔结构,其耐高温性能相对于聚酰亚胺树脂明显下降,极大地限制了聚酰亚胺气凝胶在航空航天高温环境热防护领域的应用。本文针对聚酰亚胺气凝胶耐高温性能不足的问题,分别介绍了线型和交联型聚酰亚胺气凝胶及其主要制备方法,系统评述了国内外学者为提升聚酰亚胺气凝胶耐高温性能而采用的主要策略,同时对聚酰亚胺气凝胶在航空航天、压力传感、环境修复和保温隔热等领域的应用进行了总结,最后结合当前聚酰亚胺气凝胶面临的主要挑战,对其未来的研究动态进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张思钊
刘淳
姜勇刚
冯坚
关键词:  聚酰亚胺气凝胶  隔热材料  热稳定性  耐高温性  热致收缩    
Abstract: Polyimide resins have so many excellent properties such as high mechanical strength, high flame resistance, high thermal stability and low dielectric constants. They are widely used in the fields of aerospace, microelectronics. Polyimide aerogels have excellent thermal insulation along with mechanical properties due to their abundant 3D nanoporous network structure combine with the properties of polyimide. However, due to the presence of abundant nanoporous network structure, the high temperature resistance of polyimide aerogels is significantly lower than that of polyimide resins, which greatly limits the application of polyimide aerogels in the field of thermal protection in aerospace high temperature environment. Based on the research status, this paper aimes at the problem of insufficient high temperature resistance of polyimide aerogels, linear and cross-linked polyimide aerogels and their main preparation methods are introduced, and systematic reviews the main strategies of domestic and foreign scholars to improve the high temperature resistance of polyimide aerogels. The applications in aerospace, pressure sensing, environmental remediation and thermal insulation of polyimide aerogels are also mentioned in the paper. Furthermore, considering the main challenges currently faced by polyimide aerogels, its future research trends have prospected.
Key words:  polyimide aerogels    thermal insulation material    thermal stability    high temperature resistance    thermal contraction
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ323.7  
基金资助: 国家重点研发计划(2022YFC2204403);国防基础科研项目(WDZC20225250501);中国博士后科学基金面上资助(2021M693969);江西省重点研发计划(20232BBE50002)
通讯作者:  *姜勇刚,2007年获国防科技大学材料科学与工程专业博士学位,英国牛津大学材料系访问学者,现任国防科技大学空天科学学院副研究员、硕士研究生导师,主要从事纳米气凝胶隔热复合材料研究。近年来,发表学术论文30余篇,授权国家发明专利20余项。jygemail@nudt.edu.cn
张思钊,2018年获国防科技大学材料科学与工程专业博士学位,现任江西理工大学国际创新研究院副教授、硕士研究生导师,主要从事飞行器热防护技术及系统工程应用研究。近年来,发表SCI学术论文20余篇,出版学术专著1部,授权国家发明专利6项、国际发明专利1项。sinchawchang@126.com   
引用本文:    
张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
ZHANG Sizhao, LIU Chun, JIANG Yonggang, FENG Jian. Progress on Polyimide Aerogels with High Temperature Resistance. Materials Reports, 2024, 38(13): 23040260-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040260  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23040260
1 Hayase G, Kanamori K, Abe K, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9466.
2 Si Y, Wang X Q, Dou L Y, et al. Science Advances, 2018, 4, 8925.
3 Zhang S Z. Synthetic design and characterization of chitosan aerogels. Ph. D. Thesis, National University of Defense Technology, China, 2018 (in Chinese).
张思钊. 壳聚糖气凝胶的构筑设计与性能研究. 博士学位论文, 国防科技大学, 2018.
4 Li X, Wang J, Zhao Y B, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16901.
5 Tian J, Yang Y, Xue T T, et al. Journal of Materials Science & Techno-logy, 2022, 105, 194.
6 Zhang Z, Wang X D, Liu T, et al. Journal of Non-Crystalline Solids, 2021, 559, 120679.
7 Nguyen B N, Scheiman D A, Meador M A B, et al. ACS Applied Polymer Materials, 2021, 3(4), 2027.
8 Jones S M. Journal of Sol-Gel Science and Technology, 2006, 40, 351.
9 Xue S Y, Jia Y, Zhang B Q, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(3), 626586 (in Chinese).
薛淑艳, 贾洋, 张冰强, 等. 航空学报, 2022, 43(3), 626586.
10 Kistler S S. Nature, 1931, 127, 741.
11 Yu Z L, Yang N, Kalkavoura V A, et al. Angewandte Chemie International Edition, 2018, 57(17), 4538.
12 Parmenter K E, Milstein F. Journal of Non-Crystalline Solids, 1988, 223(3), 179.
13 Zhu Z X. Preparation and alabtion/insulation properties of nanoporous organic aerogel composites. Ph. D. Thesis, East China University of Science and Technology, China, 2019 (in Chinese).
朱召贤. 纳米孔有机气凝胶复合材料的制备及其防隔热性能研究. 博士学位论文, 华东理工大学, 2019.
14 Zhang S Z, Wang Z, Hu Y B, et al. Biomacromolecules, 2022, 23(12), 5056.
15 Li Y, Liu X F, Nie X Y, et al. Advanced Functional Materials, 2019, 29, 1807624.
16 Corso J D, Cheatwood F, Bruce W, et al. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar 2011. Dublin, 2011, pp.139.
17 Liu F Q, Wang L K, Men J, et al. Aerospace Materials & Technology, 2022, 52(2), 26 (in Chinese).
柳凤琦, 王鲁凯, 门静, 等. 宇航材料工艺, 2022, 52(2), 26.
18 Feng Z H, Shi J J, Kong L, et al. Journal of Materials Engineering, 2020, 48(8), 14 (in Chinese).
冯志海, 师建军, 孔磊, 等. 材料工程, 2020, 48(8), 14.
19 Mosanenzadeh S G, Tafreshi O A, Karamikamkar S, et al. Advances in Colloid and Interface Science, 2022, 304, 102646.
20 Guo H Q, Meador M A B, McCorkle L, et al. ACS Applied Materials & Interfaces, 2012, 4(10), 5422.
21 Pantoja M, Boynton N, Cavicchi K A, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9425.
22 Cashman J L, Nguyen B N, Dosa B, et al. ACS Applied Polymer Materials, 2020, 2(6), 2179.
23 Guo H Q, Meador M A B, Cashman J L, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 33288.
24 Deng Y R, Pan Y L, Zhang Z X, et al. Advanced Functional Materials, 2022, 32(4), 2106176.
25 Shi B L, Ma B, Wang C Q, et al. Composites Part A-Applied Science and Manufacturing, 2021, 143, 106283.
26 Fang G Q. Molucular design, synthesis and antiatomic-oxygen functionalization of polyimide aerogels. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinses).
房光强. 聚酰亚胺气凝胶的分子设计、合成及其抗原子氧功能化研究. 博士学位论文, 上海交通大学, 2016.
27 Rhine W, Wang J, Begag R. U. S. patent, 7074880, 2006.
28 Zhang S Z, Wang Z, Wang J, et al. ACS Applied Polymer Materials, 2022, 4(11), 8227.
29 Kawagishi H, Saito H, Furukawa H, et al. Macromolecular Rapid Communications, 2007, 28(1), 96.
30 Guo H Q, Meador M A B, McCorkle L, et al. ACS Applied Materials & Interfaces, 2011, 3(2), 546.
31 Meador M A B, Malow E J, Silva R, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 536.
32 Shen D X, Liu J G, Yang H X, et al. Chemistry Letters, 2013, 42, 1545.
33 Meador M A B, Aleman C R, Hanson K, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1240.
34 Simon-Herrero C, Chen X Y, Oritz M L, et al. Journal of Materials Research and Technology, 2019, 8(3), 2638.
35 Nguyen B N, Meador M A B, Scheiman D, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 27313.
36 Feng J Z, Wang X, Jiang Y G, et al. ACS Applied Materials & Interfaces, 2016, 8(20), 12992.
37 Saadatnia Z, Mosanenzadeh S G, Esmailzadeh E, et al. Scientific Reports, 2019, 9(1), 1370.
38 Mosanenzadeh S G, Alshrah M, Saadatnia Z, et al. Macromolecular Materials and Engineering, 2020, 305(4), 1900777.
39 Mosanenzadeh S G, Saadatnia Z, Shi F, et al. Polymer, 2019, 176, 213.
40 Ma S Q, Wang C Y, Cong B, et al. Chemical Engineering Journal, 2021, 431, 134047.
41 Yuan R X, Zhou Y, Lu X M, et al. Chemical Engineering Journal, 2022, 428, 131193.
42 Kim J, Kwon J, Kim S I, et al. Microporous and Mesoporous Materials, 2016, 234, 35.
43 Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. Journal of Materials Chemistry, 2010, 20(43), 9666.
44 Guo B H, Chen L, Yu J R, et al. Journal of Applied Polymer Science, 2014, 131, 40165.
45 Xie W, Pan W P, Chuang K C. Journal of Thermal Analysis and Calorimetry, 2001, 64, 477.
46 Bielawski C W, Grubbs R H. Progess in Polymer Science, 2007, 32(1), 1.
47 Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Chemistry of Materials, 2011, 23(8), 2250.
48 Wang Q Q, Zhou Y P, Zheng H B, et al. Engineering Plastics Application, 2019, 47(8), 144 (in Chinese).
王倩倩, 周燕萍, 郑会保, 等. 工程塑料应用, 2019, 47(8), 144.
49 Hou X B, Zhang R B, Fang D N. ACS Sustainable Chemistry & Engineering, 2021, 9(22), 7638.
50 Zhong A, Li J H, Zhang Y, et al. Composites Part A-Applied Science and Manufacturing, 2020, 137, 105995.
51 Wu S, Huang S M, Sun W, et al. RSC Advances, 2016, 6(27), 22868.
52 Viggiano R P, Williams J C, Schiraldi D A, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8287.
53 Zhou T, Cheng X D, Pan Y L, et al. Applied Surface Science, 2018, 437, 321.
54 Yu H J, Tong Z W, Zhang B J, et al. Chemical Engineering Journal, 2021, 418, 129342.
55 Liu T, Liang F W, Chen S, et al. Polymers for Advanced Technologies, 2023, 34(5), 1769.
56 Zhu Z X, Yao H J, Wang F, et al. Macromolecular Materials and Engineering, 2019, 304(5), 1800676.
57 Xu G F, Li M J, Wu T T, et al. Reactive and Functional Polymers, 2020, 154, 104672.
58 Zhang X H, Ni X X, He M Y, et al. Materials Chemistry Frontiers, 2021, 5(2), 804.
59 Pan Y, Zheng J, Xu Y Y, et al. Journal of Colloid and Interface Science, 2022, 628, 829.
60 Hou X B, Mao Y Q, Zhang R B, et al. Chemical Engineering Journal, 2021, 417, 129341.
61 Qiao S Y, Kang S, Zhang H, et al. Separation and Purification Technology, 2021, 276, 119393.
62 Huang D J, Wang W B, Xu J X, et al. Chemical Engineering Journal, 2012, 210, 166.
63 Wu T T, Dong J, Xu G F, et al. Polymer, 2019, 176, 196.
64 Wu T T, Dong J, France K D, et al. ACS Applied Polymer Materials, 2020, 2(9), 3876.
65 Kantor Z, Wu T T, Zeng Z H, et al. Chemical Engineering Journal, 2022, 433, 136401.
66 Fan W, Zuo L Z, Zhang Y F, et al. Composites Science and Technology, 2018, 156, 186.
67 Liu P, Tran T Q, Fan Z, et al. Composites Science and Technology, 2015, 117, 114.
68 Zhu Z X, Yao H J, Dong J X, et al. Carbon, 2019, 144, 24.
69 Zhang D L, Lin Y, Wang W, et al. Applied Surface Science, 2021, 543, 148833.
70 Qin Y Y, Peng Q Y, Ding Y J, et al. ACS Nano, 2015, 9(9), 8933.
71 Zhang X H, Li W, Song P Y, et al. Chemical Engineering Journal, 2020, 381, 122784.
72 Xue T T, Fan W, Zhang X, et al. Composites Part B-Engineering, 2021, 219, 108963.
73 Meador M A B, Wright S, Sandberg A, et al. ACS Applied Materials & Interfaces, 2012, 4(11), 6346.
74 Liu H, Chen X Y, Zheng Y J, et al. Advanced Functional Materials, 2021, 31(13), 2008006.
75 Liu J, Zhang H B, Xie X, et al. Small, 2018, 14(45), 1802479.
76 Wang Y X, He T J, Liu M Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 581, 123809.
77 Zhuo L H, Ma C, Xie F, et al. Cellulose, 2020, 27(13), 7677.
78 Zhao X Y, Yang F, Wang Z C, et al. Composites Part B-Engineering, 2020, 182, 107624.
79 Wang Y J, Cui Y, Shao Z Y, et al. Chemical Engineering Journal, 2020, 390, 124623.
80 Zhang T Y, Zhao Y, Li X K, et al. Microporous and Mesoporous Materials, 2021, 319, 111074.
[1] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[2] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[3] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[4] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[5] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[6] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[7] 向艳超, 高鸿, 文明, 赵啟伟. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193-6.
[8] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[9] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[10] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[11] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[12] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[13] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[14] 路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
[15] 李萍, 张源, 吴义强, 袁光明, 李贤军, 左迎峰. 基于原位浸渍法的酚醛树脂改性杉木木材研究[J]. 材料导报, 2021, 35(22): 22193-22199.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed