Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050193-6    https://doi.org/10.11896/cldb.22050193
  宇航材料 |
航天器热控材料及应用研究进展
向艳超1, 高鸿2, 文明2, 赵啟伟1,*
1 北京空间飞行器总体设计部,空间热控技术北京重点实验室,北京 100094
2 中国空间技术研究院,北京 100094
Review of Spacecraft Thermal Control Materials and Applications
XIANG Yanchao1, GAO Hong2, WEN Ming2, ZHAO Qiwei1,*
1 Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
2 China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 1982KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热控材料是实现航天器热控功能的重要介质,是航天器热控技术发展的基础。航天器热控系统中大量使用多层隔热材料、导热材料、热控涂层、界面材料等均是利用材料自身热物理特性实现航天器温度场的控制。本文从航天器热控材料工程应用角度,综述了航天器热控系统常用的隔热材料、高导热材料、涂层材料及界面材料等四类热控材料的研究与空间应用进展,分析了未来空间科学探测、低温推进剂在轨贮存等空间应用场景在深低温及高温环境下对热控技术的发展需求,提出了对深低温和高温环境下高效隔热材料、特种涂层材料等航天器热控材料的发展建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向艳超
高鸿
文明
赵啟伟
关键词:  航天器  热控材料  隔热材料  导热材料  界面材料  热控涂层    
Abstract: Thermal control material is an important medium to realize the thermal control function of spacecraft, and is the basis for the development of spacecraft thermal control technology. The wide application of multilayer insulation materials, thermal conductive materials, thermal coatings and interface materials in the spacecraft thermal control system, realize the thermal control of spacecraft by using the thermophysical properties of the materials. From the perspective of spacecraft thermal control materials engineering application, we summarize the research and application progresses of four types of thermal control materials commonly used in spacecraft thermal control system, including thermal insulation materials, high thermal conductivity materials, coating materials and interface materials, and prospect the development needs of thermal control technology in deep low and high temperature environment, which will be applied in the future space science probe and low temperature propellant in-orbit storage project. Finally, we put forward suggestions on thermal control materials that may be used in deep low and high temperature environment, such as high thermal insulation materials and coating materials.
Key words:  spacecraft    thermal control material    thermal insulation material    thermal conductivity material    interface material    thermal control coating
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V416  
通讯作者:  * zhaoqw501@sina.com   
作者简介:  向艳超,研究员,长期从事航天器热控技术与系统设计研究工作,负责多个深空探测型号热控系统研制,发表论文20余篇。
赵啟伟,博士,研究员,长期从事航天器热控专业技术、热控材料与工艺等研究工作,负责多个型号及卫星平台热控系统研制,授权发明专利10项,发表论文30余篇。
引用本文:    
向艳超, 高鸿, 文明, 赵啟伟. 航天器热控材料及应用研究进展[J]. 材料导报, 2022, 36(22): 22050193-6.
XIANG Yanchao, GAO Hong, WEN Ming, ZHAO Qiwei. Review of Spacecraft Thermal Control Materials and Applications. Materials Reports, 2022, 36(22): 22050193-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050193  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050193
1 Fan H L. Aerospace Material and Technology, 2007(6), 7(in Chinese).
范含林.宇航材料工艺, 2007(6), 7.
2 Fan H L, Fan Y F. Spacecraft Environment Engineering, 2010, 27(2), 135(in Chinese).
范含林, 范宇峰.航天器环境工程, 2010, 27(2), 135.
3 Xiang Y C, Zhang B Q, Xue S Y, et al. Sci Sin Tech,2022,52(2),245(in Chinese).
向艳超, 张冰强, 薛淑艳, 等.中国科学: 技术科学, 2022,52(2),245.
4 Yu D Y, Qiu J W, Xiang Y C. Journal of Deep Space Exploration, 2021, 8(5), 447(in Chinese).
于登云,邱家稳,向艳超. 深空探测学报(中英文),2021,8(5),447.
5 Bhandari P, Moore B, Bolton D, et al. In: International Conference on Environmental Systems, 2020, ICES-2020-24.
6 Heisler E, Abel E, Congdon E, et al.In: Proceedings of the 2017 IEEE Aerospace Conference. Big Sky, DOI: 10. 1109/ AERO. 2017.7943703.
7 Huang S J, Zhong X Y, Lin J, et al. Astronomical Research and Techno-logy, 2021, 18(1), 87(in Chinese).
黄善杰, 种晓宇, 林隽, 等. 天文研究与技术, 2021, 18(1), 87.
8 Li M. Spacecraft Engineering, 2016, 25(2), 1(in Chinese).
李明.航天器工程, 2016, 25(2), 1.
9 Yang W, Huo H L, Li H B, et al. Structure & Environment Engineering, 2020, 47(2), 1(in Chinese).
杨雯, 霍浩亮, 李海波, 等. 强度与环境, 2020, 47(2), 1.
10 Min G R, Guo S. Spacecraft thermal control technology, Science Press, China, 1998, pp.110(in Chinese).
闵桂荣, 郭瞬. 航天器热控制, 科学出版社, 1998, pp. 110.
11 Miao J Y, Zhong Q, Zhao Q W, et al. Sapcecraft thermal control techno-logy, Beijing Institute of Technology Press, China, 2018, pp.216(in Chinese).
苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术, 北京理工大学出版社, 2018, pp. 216.
12 Chi X T. Study on heat transfer characteristics of multilayer insulation structure of low temperature propellant tank.Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
迟晓婷. 低温推进剂储箱多层绝热结构的传热特性研究.硕士学位论文,哈尔滨工业大学,2019.
13 Dye S A, Tyler P N, Mills G L, et al. Cryogenics, 2014, 64, 100.
14 Miyakita T, Hatakenaka R, Sugita H, et al. Cryogenics, 2014, 64, 112.
15 Lei Y F, Han M L, Ai S F, et al. Aerospace Materials & Technology, 2019, 6(17), 86(in Chinese).
雷尧飞, 韩妙玲, 艾素芬, 等. 宇航材料工艺, 2019, 6(17), 86.
16 Ai S F, Xiang Y C, Lei Y F, et al. Journal of Deep Space Exploration, 2020, 7(5), 466(in Chinese).
艾素芬, 向艳超, 雷尧飞, 等. 深空探测学报(中英文), 2020, 7(5), 466.
17 Xue S Y, Jia Y, Zhang B Q, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(3), 626586(in Chinese).
薛淑艳, 贾阳, 张冰强, 等. 航空学报, 2022, 43(3), 626586.
18 Hickey G S, Braun D, Wen L C, et al. In: 26th International Conference on Environmental Systems. Monterey, 1996, pp.961534.
19 Eisen H J, Wen L C, Hickey G, et al. In: 28th International Conference on Environmental Systems. Danvers, 1998, pp.981685.
20 Jones S M.Journal of Sol-Gel Science and Technology,2006,40(2-3),351.
21 Zhao N, Feng J, Jiang Y G, et al. Aerospace Materials & Technology, 2010, 40(5), 10(in Chinese).
赵楠, 冯坚, 姜勇刚, 等. 宇航材料工艺, 2010, 40(5), 10.
22 Wu X D, Cui S, Wang L, et al. Materials Reports A: Review Papers, 2015, 29(5), 102(in Chinese).
吴晓栋, 崔升, 王岭, 等. 材料导报:综述篇, 2015, 29(5), 102.
23 Suo H, Wang W, Jiang S J, et al. Aerospace Shanghai, 2019, 36(6), 61(in Chinese).
锁浩, 王伟, 江胜君, 等. 上海航天, 2019, 36(6), 61.
24 Zheng K, Rao W, Xiang Y C, et al. Acta Aeronautica et Astronautica Sinica, 2022, 43(3), 626568(in Chinese).
郑凯, 饶炜, 向艳超, 等. 航空学报, 2022, 43(3), 626568.
25 Kim G H,Lee D,Shanker A,et al. Nature Materials,2015,14(3),295.
26 Shen S, Henry A, Tong J, et al. Nature Nanotech, 2010, 5(4), 25.
27 Wu Y M, Yu J H, Cao Y, et al. Acta Materiae Compositae Sinica, 2018, 35(4), 760(in Chinese).
吴宇明, 虞锦洪, 曹勇, 等. 复合材料学报, 2018, 35(4), 760.
28 Xu W Q, Huang T Q, Li Y W, et al. Polymer Materials Science and Engineering, 2021, 37(1), 284(in Chinese).
徐万顷, 黄桃青, 李永伟, 等. 高分子材料科学与工程, 2021, 37(1), 284.
29 Li Z Q, Tan Z Q, Fan G L, et al. Materials China, 2013, 32(7), 431(in Chinese).
李志强, 谭占秋, 范根连, 等. 中国材料进展, 2013, 32(7), 431.
30 Yan Q, Chen B, Li J S. Materials China, 2019, 38(11), 1061(in Chinese).
晏琪, 陈彪, 李金山. 中国材料进展, 2019, 38(11), 1061.
31 Du W B, Hou J T, Meng F J, et al. Materials China, 2020, 39(1), 12(in Chinese).
杜文博, 侯江涛, 孟繁婧, 等. 中国材料进展, 2020, 39(1), 12.
32 Feng Z H, Fan Z, Kong Q. Journal of Shanghai University(Natural Science), 2014, 20(1), 51(in Chinese).
冯志海, 樊桢, 孔清, 等. 上海大学学报, 2014, 20(1), 51.
33 Fan Z, Yu L Q, Li W, et al. Materials China, 2017, 36(5), 369(in Chinese).
樊桢, 余立琼, 李炜, 等. 中国材料进展, 2017, 36(5), 369.
34 Yao Y M, Li H, Liu Z Q. Journal of Materials Engineering, 2020, 48(11), 155(in Chinese).
姚彧敏, 李红, 刘正启, 等. 材料工程, 2020, 48(11), 155.
35 Renbarger M. In: Optical System Contamination: Effects, Measurements, and Control.San Diego, DOI:10.1117/12.858575.
36 Tuttle J, Ed C, DiPirro M, et al. Cryogenics, 2014, 64, 240.
37 Franck R A, Gurule A P, Brinckerhoff P A, et al. In: 46th International Conference on Environmental Systems. Vienna, 2016.
38 Randy A. Franck. Cryogenics, 2014, 64, 235.
39 Dantzler A A, Strain R D, Faulconer J W. Solar probe+ mission enginee-ring study report. The Johns Hopkins University Applied Physics Laboratory, 2008.
40 Grob L M, Swanson T D. In: Space Technology and Applications International Forum. Albuquerque, 2000.
41 Tachikawa S, Ohnishi A, Nakamura Y, et al. In: 38th International Conference on Environmental Systems. San Francisco,2008,2008-01-2152.
42 Tachikawa S, Ohnishi A, Matsumoto K, et al. In: 39th International Conference on Environmental Systems. Savannah, Georgia, 2009,2009-01-2574.
43 Chen W C, Li Z, Chen X L. Aerospace Materials & Technology, 2015(1), 1(in Chinese).
陈维春, 李志, 陈新龙. 宇航材料工艺, 2015(1), 1.
44 BenKahoul M, Haddad E, Kruzelecky R V, et al.In: 40th International Conference on Environmental Systems. 2010,AIAA 2010-6266.
45 Dudon J P, Marcel C, Dubost L, et al. In: 50th International Conference on Environmental Systems. 2021,ICES-2021-63.
46 Granqvist C G. Solid State Ionics, 1992, 53, 479.
47 Wang J B, He Y C, Xu M, et al. Chinese Journal of Vacuum Science and Technology, 2008, 28(z), 83(in Chinese).
王洁冰,何延春, 许旻, 等. 真空科学与技术学报,2009,28(z),83.
48 Wu Zhonghou, Diao Xungang, Dong Guobo. International Society for Optics and Photonics, DOI:10.1117/12.2229866.
49 Chandrasekhar P, Birur G C, Stevens P, et al. Synthetic Metals, 2001, 119, 293.
50 Chandrasekhar P, Zay B J, McQueeney T, et al. Synthetic Metals, 2003, 135, 23.
51 Dudon J P, Doll B, Dubost L, et al. In: 51th International Conference on Environmental Systems. Saint-Paul, 2022,ICES-2022-135.
52 Liu D Q, Cheng H F, Zheng W W, et al. Journal of National University of Defense Technology, 2012, 34(2), 145(in Chinese).
刘东青,程海峰,郑文伟,等.国防科技大学学报,2012,34(2),145.
53 Sonavane A C, Inamdar A I, Dalavi D S, et al. Electrochimica Acta, 2010, 55(7), 2344.
54 Fu Chaopeng, Foo Ceyao, Lee Pooi See. Electrochimica Acta, 2014, 117(4), 139.
55 Cai G F. Preparation and improved electrochromic properties of metal oxide films.Ph.D. Thesis, Zhejiang University,China,2014(in Chinese).
蔡国发.金属氧化物基电致变色薄膜的制备及性能改善.博士学位论文,浙江大学, 2014.
56 Jin S Q, Wen S S, Li M Y, et al. Surface Technology, 2020, 49(7), 98(in Chinese).
金世奇, 文尚胜, 李牧云, 等.表面技术, 2020, 49(7), 98.
57 Mou J, Hong G T. Vacuum & Cryogenics,2018,24(1),19(in Chinese).
牟健, 洪国同. 真空与低温, 2018, 24(1), 19.
58 Wang Q, Gao W, Xie Z M. Silicone Material,2000,14(1),5(in Chinese).
汪倩, 高伟, 谢择民. 有机硅材料, 2000, 14(1), 5.
59 Cui W, Zhu Y, Yuan X Y, et al. Rear Metal Materials and Engineering, 2011, 40(Z1), 443(in Chinese).
崔巍, 祝渊, 袁轩一, 等. 稀有金属材料与工程,2011,40(Z1),443.
60 Chen S R, Bao Y Q, Wang Q, et al. Silicone Material, 2019, 33(6), 446(in Chinese).
陈世容, 暴玉强, 王强, 等. 有机硅材料, 2019, 33(6), 446.
61 Li J X,Zhu H T,Lei Q Q. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2018, 39(1), 54(in Chinese).
李婧璇, 朱海涛, 雷清泉. 青岛科技大学学报(自然科学版), 2018, 39(1), 54.
62 Zhu W W, Zhu S C, Wang G J. Journal of Lanzhou University of Arts and Science(Natural Sciences), 2021, 35(3), 40(in Chinese).
朱威威, 朱世从, 王广健. 兰州文理学院报(自然科学版), 2021, 35(3), 40.
63 An L, Liu Q, Chen L F, et al. Journal of Shanghai Polytechnic University, 2020, 37(1), 31(in Chinese).
安磊, 刘琦, 陈立飞, 等. 上海第二工业大学学报,2020,37(1),31.
64 Li J C, Zhao X Y, Ji X W, et al. Insulating Material, 202l, 54(2), 49(in Chinese).
李京超, 赵秀英, 嵇小旺, 等. 绝缘材料, 202l, 54(2), 49.
65 Chen Z Z, Ren X W, Sun J W, et al. Journal of Materials Science & Engineering, 2020, 38(6), 954(in Chinese).
陈冉冉,任晓雯,孙敬文,等. 材料科学与工程学报,2020,38(6),954.
66 Yan Z D, Wang X R, Wang Y, et al. Aerospace Materials & Technology, 2008(1), 60(in Chinese).
颜则东, 王先荣, 王鷁, 等. 宇航材料工艺, 2008(1), 60.
67 Sarvar F, Whalley D C, Conway P P. In: Electronics Systemintegration Technology Conference.Dresden,2006,pp.1292.
68 Ren H Y, Hu J G. Aerospace Materials and Technology, 1999, 29(6), 1(in Chinese).
任红艳, 胡金刚.宇航材料工艺, 1999, 29(6), 1.
69 Xie M J, Zhang P, Cai M, et al. Journal of Guilin University of Electronic Technology, 2020, 40(4), 362(in Chinese).
谢明君,张平,蔡萌,等. 桂林电子科技大学学报,2020,40(4),362.
[1] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[2] 高鸿, 邢焰, 孙明, 余斌, 李岩, 刘泊天, 吴冰, 于利夫, 樊彦艳. 航天器用材料应用验证技术体系[J]. 材料导报, 2022, 36(22): 22050332-5.
[3] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[4] 路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
[5] 陈冉冉, 郭成, 陈砚朋, 孙敬文, 齐会民. 低迁移绝缘导热硅脂界面材料的制备及其性能研究[J]. 材料导报, 2021, 35(20): 20176-20182.
[6] 苏力军, 赵佳明, 王瑞杰, 郭慧, 宋寒, 李文静, 杨洁颖. 夹层结构气凝胶外防热材料的制备及应用技术研究[J]. 材料导报, 2020, 34(Z2): 157-159.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed